과제정보
This work was supported by the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01566401), Rural Development Administration, Republic of Korea, and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A5A8029490).
참고문헌
- Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG. 2016. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 11: 12.
- US EPA. 2013. Global mitigation of non-CO2 greenhouse gases: 2010-2030.
- Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, et al. 2013. Greenhouse gas emissions from ruminant supply chains-A global life cycle assessment. Food and agriculture organization of the United Nations.
- Islam M, Lee SS. 2019. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. J. Anim. Sci. Technol. 61: 122-137. https://doi.org/10.5187/jast.2019.61.3.122
- Rate NM. 2017. World Population Prospects: The 2017 Revision, United Nations Population Division. UN Data.
- Ribeiro Pereira LG, Machado FS, Campos MM, Guimaraes Junior R, Tomich TR, Reis LG, et al. 2015. Enteric methane mitigation strategies in ruminants: a review. Rev. Colom. Cienc. Pecu. 28: 124-143.
- Salter AM. 2017. Improving the sustainability of global meat and milk production. Proc. Nutr. Soc. 76: 22-27. https://doi.org/10.1017/S0029665116000276
- Heilig GK. 1994. The greenhouse gas methane (CH 4): sources and sinks, the impact of population growth, possible interventions. Popul. Environ. 16: 109-137. https://doi.org/10.1007/BF02208779
- EPA. 2008. http://www.epa.gov/. Accessed May 15, 2008.
- FAO. 2006. In: Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (eds) Livestock's long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, ISBN: 978-92-5-105571-7.
- Giger-Reverdin S, Sauvant D. 2000. Methane production in sheep in relation to concentrate feed composition from bibliographic data. Cah. Options Mediterr. 52: 43-46.
- Johnson KA, Johnson DE. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483-2492. https://doi.org/10.2527/1995.7382483x
- Lascano CE, Cardenas E. 2010. Alternatives for methane emission mitigation in livestock systems. R. Bras. Zootec. 39: 175-182. https://doi.org/10.1590/S1516-35982010001300020
- Hackmann TJ, Spain JN. 2010. Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J. Dairy Sci. 93: 1320-1334. https://doi.org/10.3168/jds.2009-2071
- Huntington GB. 1997. Starch utilization by ruminants: from basics to the bunk. J. Anim. Sci. 75: 852-867. https://doi.org/10.2527/1997.753852x
- Cammack KM, Austin KJ, Lamberson WR, Conant GC, Cunningham HC. 2018. Ruminant nutrition symposium: tiny but mighty: the role of the rumen microbes in livestock production. J. Anim. Sci. 96: 752-770.
- Clauss M, Hofmann RR. 2014. The digestive system of ruminants, and peculiarities of (wild) cattle. Ecology, evolution and behaviour of wild cattle: Implications for conservation. pp. 57-62.
- Wang Y, McAllister TA. 2002. Rumen microbes, enzymes and feed digestion-a review. Asian-Australas. J. Anim. Sci. 15: 1659-1676. https://doi.org/10.5713/ajas.2002.1659
- Matthews C, Crispie F, Lewis E, Reid M, O'Toole PW, Cotter PD. 2019. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 10: 115-132. https://doi.org/10.1080/19490976.2018.1505176
- McCann JC, Wickersham TA, Loor JJ. 2014. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights 8: BBI-S15389.
- Bergman EN, Reid RS, Murray MG, Brockway JM, Whitelaw FG, 1965. Interconversions and production of volatile fatty acids in the sheep rumen. Biochem. J. 97: 53-55. https://doi.org/10.1042/bj0970053
- Janssen PH, Kirs M. 2008. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74: 3619-3625. https://doi.org/10.1128/AEM.02812-07
- De la Fuente G, Yanez-Ruiz DR, Seradj AR, Balcells J, Belanche A. 2019. Methanogenesis in animals with foregut and hindgut fermentation: a review. Anim. Prod. Sci. 59: 2109-2122. https://doi.org/10.1071/AN17701
- Poulsen M, Schwab C, Borg Jensen B, Engberg RM, Spang A, Canibe N, et al. 2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4: 1428. https://doi.org/10.1038/ncomms2432
- Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6: 579-591. https://doi.org/10.1038/nrmicro1931
- Van Zijderveld SM, Gerrits WJ, Apajalahti JA, Newbold JR, Dijkstra J, Leng RA, et al. 2010. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93: 5856-5866. https://doi.org/10.3168/jds.2010-3281
- Hook SE, Wright ADG, McBride BW. 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010: 945785. https://doi.org/10.1155/2010/945785
- McAllister TA, Newbold CJ. 2008. Redirecting rumen fermentation to reduce methanogenesis. Austral. J. Exp. Agric. 48: 7-13. https://doi.org/10.1071/EA07218
- Ungerfeld EM. 2020. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front. Microbiol. 11: 589. https://doi.org/10.3389/fmicb.2020.00589
- Haque MN. 2018. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60: 15. https://doi.org/10.1186/s40781-018-0175-7
- Kebreab E, Strathe A, Fadel J, Moraes L, France J. 2010. Impact of dietary manipulation on nutrient flows and greenhouse gas emissions in cattle. R. Bras. Zootec. 39: 458-464. https://doi.org/10.1590/S1516-35982010001300050
- Benchaar C, Pomar C, Chiquette J. 2001. Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Can. J. Anim. Sci. 81: 563-574. https://doi.org/10.4141/A00-119
- Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K, Johnson DE. 1998. Mitigating agricultural emissions of methane. Clim. Change 40: 39-80. https://doi.org/10.1023/A:1005338731269
- Ball DM, Collins M, Lacefield GD, Martin NP, Mertens DA, Olson KE, et al. 2001. Understanding forage quality. pp. 1-21. American Farm Bureau Federation Publication.
- Hills JL, Wales WJ, Dunshea FR, Garcia SC, Roche JR. 2015. Invited review: an evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. J. Dairy Sci. 98: 1363-1401. https://doi.org/10.3168/jds.2014-8475
- Beauchemin KA, McAllister TA, McGinn SM. 2009. Dietary mitigation of enteric methane from cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Natur. Resour. 4: 1-8.
- Agle M, Hristov AN, Zaman S, Schneider C, Ndegwa PM, Vaddella VK. 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. J. Dairy Sci. 93: 4211-4222. https://doi.org/10.3168/jds.2009-2977
- Jiao HP, Dale AJ, Carson AF, Murray S, Gordon AW, Ferris CP. 2014. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 97: 7043-7053. https://doi.org/10.3168/jds.2014-7979
- Ogata T, Kim YH, Masaki T, Iwamoto E, Ohtani Y, Orihashi T, et al. 2019. Effects of an increased concentrate diet on rumen pH and the bacterial community in Japanese Black beef cattle at different fattening stages. J. Vet. Med. Sci. 81: 968-974. https://doi.org/10.1292/jvms.19-0077
- Owens FN, Secrist DS, Hill WJ, Gill DR. 1998. Acidosis in cattle: a review. J. Anim. Sci. 76: 275-286. https://doi.org/10.2527/1998.761275x
- Halmemies-Beauchet-Filleau A, Rinne M, Lamminen M, Mapato C, Ampapon T, Wanapat M, et al. 2018. Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal 12: s295-309. https://doi.org/10.1017/s1751731118002252
- Russell JB, Strobel H. 1989. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55: 1-6. https://doi.org/10.1128/aem.55.1.1-6.1989
- Richardson LF, Raun AP, Potter EL, Cooley CO, Rathmacher RP. 1976. Effect of monensin on rumen fermentation in vitro and in vivo. J. Anim. Sci. 43: 657-664. https://doi.org/10.2527/jas1976.433657x
- Bergen WG, Bates DB. 1984. Ionophores: their effect on production efficiency and mode of action. J. Anim. Sci. 58: 1465-1483. https://doi.org/10.2527/jas1984.5861465x
- Thivend P, Jouany JP. 1983. Effect of lasalocid sodium on rumen fermentation and digestion in sheep. Reprod. Nutr. Dev. 23: 817-828. https://doi.org/10.1051/rnd:19830602
- Singh GP, Mohini M. 1999. Effect of different levels of rumensin in diet on rumen fermentation, nutrient digestibility and methane production in cattle. Asian-Austral. J. Anim. Sci. 12: 1215-1221. https://doi.org/10.5713/ajas.1999.1215
- Odongo NE, Bagg R, Vessie G, Dick P, Or-Rashid MM, Hook SE, et al. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. J. Dairy Sci. 90: 1781-1788. https://doi.org/10.3168/jds.2006-708
- Marques RD, Cooke RF. 2021. Effects of ionophores on ruminal function of beef cattle. Animals 11: 2871. https://doi.org/10.3390/ani11102871
- McGuffey RK, Richardson LF, Wilkinson JI. 2001. Ionophores for dairy cattle: current status and future outlook. J. Dairy Sci. 84: E194-203. https://doi.org/10.3168/jds.S0022-0302(01)70218-4
- Russell JB, Houlihan AJ. 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol. Rev. 27: 65-74. https://doi.org/10.1016/S0168-6445(03)00019-6
- Guan H, Wittenberg KM, Ominski KH, Krause DO. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84: 1896-1906. https://doi.org/10.2527/jas.2005-652
- Appuhamy JR, Strathe AB, Jayasundara S, Wagner-Riddle C, Dijkstra J, France J, et al. 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. J. Dairy Sci. 96: 5161-5173. https://doi.org/10.3168/jds.2012-5923
- Carmean BR, Johnson DE. 1990. Persistence of monensin-induced changes in methane emissions and ruminal protozoa numbers in cattle. J. Anim. Sci. 68(Suppl 1): 517.
- Patra A, Park T, Kim M, Yu Z. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8: 13. https://doi.org/10.1186/s40104-017-0145-9
- Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, et al. 2012. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481: 98-101. https://doi.org/10.1038/nature10663
- Callaway TR, Edrington TS, Rychlik JL, Genovese KJ, Poole TL, Jung YS, et al. 2003. Ionophores: their use as ruminant growth promotants and impact on food safety. Curr. Issues Intest. Microbiol. 4: 43-51.
- Chen H, Gan Q, Fan C. 2020. Methyl-coenzyme M reductase and its post-translational modifications. Front. Microbiol. 11: 578356. https://doi.org/10.3389/fmicb.2020.578356
- Hwang HS, Ok JU, Lee SJ, Chu GM, Kim KH, Oh YK, et al. 2012. Effects of halogenated compounds on in vitro fermentation characteristics in the rumen and methane emissions. J. Life Sci. 22: 1187-1193. https://doi.org/10.5352/JLS.2012.22.9.1187
- Mathison GW, Okine EK, McAllister TA, Dong Y, Galbraith J, Dmytruk OI. 1998. Reducing methane emissions from ruminant animals. J. Appl. Anim. Res. 14: 1-28. https://doi.org/10.1080/09712119.1998.9706212
- Dong Y, Bae HD, McAllister TA, Mathison GW, Cheng KJ. 1999. Effects of exogenous fibrolytic enzymes, α-bromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Can. J. Anim. Sci. 79: 491-498. https://doi.org/10.4141/A99-024
- Martinez-Fernandez G, Duval S, Kindermann M, Schirra HJ, Denman SE, McSweeney CS. 2018. 3-NOP vs. halogenated compound: methane production, ruminal fermentation and microbial community response in forage fed cattle. Front. Microbiol. 9: 1582. https://doi.org/10.3389/fmicb.2018.01582
- Zhang ZW, Cao ZJ, Wang YL, Wang YJ, Yang HJ, Li SL. 2018. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: a review. Anim. Feed Sci. Technol. 236: 107-114. https://doi.org/10.1016/j.anifeedsci.2017.12.010
- Alemu AW, Pekrul LK, Shreck AL, Booker CW, McGinn SM, Kindermann M, et al. 2021. 3-nitrooxypropanol decreased enteric methane production from growing beef cattle in a commercial feedlot: implications for sustainable beef cattle production. Front. Anim. Sci. 2: 641590. https://doi.org/10.3389/fanim.2021.641590
- Lopes JC, De Matos LF, Harper MT, Giallongo F, Oh J, Gruen D, et al. 2016. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. J. Dairy Sci. 99: 5335-5344. https://doi.org/10.3168/jds.2015-10832
- Haisan J, Sun Y, Guan LL, Beauchemin KA, Iwaasa A, Duval S, et al. 2014. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 97: 3110-3119. https://doi.org/10.3168/jds.2013-7834
- Romero-Perez A, Okine EK, McGinn SM, Guan LL, Oba M, Duval SM, et al. 2015. Sustained reduction in methane production from long-term addition of 3-nitrooxypropanol to a beef cattle diet. J. Anim. Sci. 93: 1780-1791. https://doi.org/10.2527/jas.2014-8726
- Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, Laconi EB, et al. 2018. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital. J. Anim. Sci. 17: 650-656. https://doi.org/10.1080/1828051x.2017.1404945
- Lee C, Beauchemin KA. 2014. A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 94: 557-570. https://doi.org/10.4141/cjas-2014-069
- Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi K, Kobayashi Y, et al. 2012. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br. J. Nutr. 108: 482-491. https://doi.org/10.1017/S0007114511005794
- Kobayashi Y. 2010. Abatement of methane production from ruminants: trends in the manipulation of rumen fermentation. Asian-Austral. J. Anim. Sci. 23: 410-416. https://doi.org/10.5713/ajas.2010.r.01
- Boadi D, Benchaar C, Chiquette J, Masse D. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can. J. Anim. Sci. 84: 319-335. https://doi.org/10.4141/A03-109
- Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, et al. 2020. Seaweed and seaweed bioactives for mitigation of enteric methane: challenges and opportunities. Animals 10: 2432. https://doi.org/10.3390/ani10122432
- Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, et al. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 145: 209-228. https://doi.org/10.1016/j.anifeedsci.2007.04.014
- Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94: 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
- Davoodi SM, Mesgaran MD, Vakili AR, Valizadeh R, Pirbalouti AG. 2019. In vitro effect of essential oils on rumen fermentation and microbial nitrogen yield of high concentrate dairy cow diet. Biosci. Biotechnol. Res. Asia 16: 333-341. https://doi.org/10.13005/bbra/2749
- Benchaar C, Greathead H. 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 166: 338-355. https://doi.org/10.1016/j.anifeedsci.2011.04.024
- Iqbal MF, Cheng YF, Zhu WY, Zeshan B. 2008. Mitigation of ruminant methane production: current strategies, constraints and future options. World J. Microbiol. Biotechnol. 24: 2747-2755. https://doi.org/10.1007/s11274-008-9819-y
- Toprak NN. 2015. Do fats reduce methane emission by ruminants? - A review. Anim. Sci. Pap. Rep. 33: 305-321.
- Soliva CR, Amelchanka SL, Duval SM, Kreuzer M. 2011. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Br. J. Nutr. 106: 114-122. https://doi.org/10.1017/S0007114510005684
- Busquet M, Calsamiglia S, Ferret A, Carro MD, Kamel C. 2005. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 88: 4393-4404. https://doi.org/10.3168/jds.S0022-0302(05)73126-X
- Yang WZ, Benchaar C, Ametaj BN, Chaves AV, He ML, McAllister TA. 2007. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 90: 5671-5681. https://doi.org/10.3168/jds.2007-0369
- Gunal M, Pinski B, AbuGhazaleh AA. 2017. Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions. Ital. J. Anim. Sci. 16: 500-506. https://doi.org/10.1080/1828051X.2017.1291283
- LaabouriI F, Guerouali A, Alali S, Remmal A, Ajbilou M. 2017. Effect of a natural food additive rich in thyme essential oil on methane emissions in dairy cows. Rev. Mar.Sci. Agron. Vet. 5: 287-292.
- Vakili AR, Khorrami B, Mesgaran MD, Parand E. 2013. The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Austral. J. Anim. Sci. 26: 935-944. https://doi.org/10.5713/ajas.2012.12636
- Roy D, Tomar SK, Sirohi SK, Kumar V, Kumar M. 2014. Efficacy of different essential oils in modulating rumen fermentation in vitro using buffalo rumen liquor. Vet. World 7: 213-218. https://doi.org/10.14202/vetworld.2014.213-218
- Cobellis G, Petrozzi A, Forte C, Acuti G, Orru M, Marcotullio MC, et al. 2015. Evaluation of the effects of mitigation on methane and ammonia production by using Origanum vulgare L. and Rosmarinus officinalis L. essential oils on in vitro rumen fermentation systems. Sustainability 7: 12856-12869. https://doi.org/10.3390/su70912856
- Patra AK, Yu Z. 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 78: 4271-4280. https://doi.org/10.1128/AEM.00309-12
- Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, et al. 2020. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J. Dairy Sci. 103: 2303-2314. https://doi.org/10.3168/jds.2019-16611
- Benchaar C. 2020. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J. Dairy Sci. 103: 1516-1527. https://doi.org/10.3168/jds.2019-17230
- Sallam SM, Bueno IC, Brigide P, Godoy PB, Vitti DM, Abdalla AL. 2009. Efficacy of eucalyptus oil on in vitro ruminal fermentation and methane production. Options Mediter. 85: 267-272.
- Wang B, Jia M, Fang L, Jiang L, Li Y. 2018. Effects of eucalyptus oil and anise oil supplementation on rumen fermentation characteristics, methane emission, and digestibility in sheep. J. Anim. Sci. 96: 3460-3470.
- Yadeghari S, Malecky M, Banadaky MD, Navidshad B. 2015. Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis. In Veterinary Research Forum. Vol. 6. pp. 285. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
- Ozkan CO, Kamalak A, Atalay AI, Tatliyer A, Kaya E. 2015. Effect of peppermint (Mentha piperita) essential oil on rumen microbial fermentation of barley grain. J. Appl. Anim. Res. 43: 287-290. https://doi.org/10.1080/09712119.2014.963101
- Beyzi SB. 2020. Effect of lavender and peppermint essential oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Buffalo Bull. 39: 311-321.
- Guyader J, Eugene M, Doreau M, Morgavi DP, Gerard C, Martin C. 2017. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. J. Dairy Sci. 100: 1845-1855. https://doi.org/10.3168/jds.2016-11644
- Woodward SL, Waghorn GC, Ulyatt MJ, Lassey KR. 2001. Early indications that feeding Lotus will reduce methane emissions from ruminants. In Proceedings-New Zealand Society of Animal Production. Vol. 61. pp. 23-26.
- Animut G, Puchala R, Goetsch AL, Patra AK, Sahlu T, Varel VH, et al. 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 144: 212-227. https://doi.org/10.1016/j.anifeedsci.2007.10.014
- Man KY, Chow KL, Man YB, Mo WY, Wong MH. 2021. Use of biochar as feed supplements for animal farming. Crit. Rev. Environ. Sci. Technol. 51: 187-217. https://doi.org/10.1080/10643389.2020.1721980
- Leng RA, Preston TR, Inthapanya S. 2012. Biochar reduces enteric methane and improves growth and feed conversion in local "Yellow" cattle fed cassava root chips and fresh cassava foliage. Livest Res. Rural Dev. 24: 199.
- Vijn S, Compart DP, Dutta N, Foukis A, Hess M, Hristov AN, et al. 2020. Key considerations for the use of seaweed to reduce enteric methane emissions from cattle. Front. Vet. Sci. 7: 597430. https://doi.org/10.3389/fvets.2020.597430
- Roque BM, Venegas M, Kinley RD, de Nys R, Duarte TL, Yang X, et al. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS One 16: e0247820. https://doi.org/10.1371/journal.pone.0247820
- Maia MR, Fonseca AJ, Oliveira HM, Mendonca C, Cabrita AR. 2016. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep. 6: 32321. https://doi.org/10.1038/srep32321
- Min BR, Parker D, Brauer D, Waldrip H, Lockard C, Hales K, et al. 2021. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: challenges and opportunities. Anim. Nutri. 7: 1371-1387. https://doi.org/10.1016/j.aninu.2021.10.003
- Roque BM, Salwen JK, Kinley R, Kebreab E. 2019. Inclusion of Asparagopsis armata in lactating dairy cows' diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 234: 132-138. https://doi.org/10.1016/j.jclepro.2019.06.193
- Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, Tomkins NW. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 259: 120836. https://doi.org/10.1016/j.jclepro.2020.120836
- Li X, Norman HC, Kinley RD, Laurence M, Wilmot M, Bender H, et al. 2016. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 58: 681-688. https://doi.org/10.1071/an15883
- Tong JJ, Zhang H, Jia WA, Yun LI, Mao SY, Xiong BH, Jiang LS. 2020. Effects of different molecular weights of chitosan on methane production and bacterial community structure in vitro. J. Integr. Agric. 19: 1644-1655. https://doi.org/10.1016/s2095-3119(20)63174-4
- Seankamsorn A, Cherdthong A, Wanapat M. 2020. Combining crude glycerin with chitosan can manipulate in vitro ruminal efficiency and inhibit methane synthesis. Animals 10: 37. https://doi.org/10.3390/ani10010037
- Vallejo-Hernandez LH, Elghandour MM, Greiner R, Anele UY, Rivas-Caceres RR, Barros-Rodriguez M, et al. 2018. Environmental impact of yeast and exogenous xylanase on mitigating carbon dioxide and enteric methane production in ruminants. J. Clean. Prod. 189: 40-46. https://doi.org/10.1016/j.jclepro.2018.03.310
- Zanferari F, Vendramini TH, Rentas MF, Gardinal R, Calomeni GD, Mesquita LG, et al. 2018. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. J. Dairy Sci. 101: 10939-10952. https://doi.org/10.3168/jds.2018-14675
- Sun K, Liu H, Fan H, Liu T, Zheng C. 2021. Research progress on the application of feed additives in ruminal methane emission reduction: a review. PeerJ. 9: e11151. https://doi.org/10.7717/peerj.11151
- Krehbiel CR, Rust SR, Zhang G, Gilliland SE. 2003. Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. J. Anim. Sci. 81: E120-132.
- Ungerfeld EM. 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front. Microbiol. 6: 37. https://doi.org/10.3389/fmicb.2015.00037
- Stein DR, Allen DT, Perry EB, Bruner JC, Gates KW, Rehberger TG, et al. 2006. Effects of feeding Propionibacteria to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci 89: 111-125. https://doi.org/10.3168/jds.S0022-0302(06)72074-4
- Mead LJ, Jones GA. 1981. Isolation and presumptive identification of adherent epithelial bacteria ("epimural" bacteria) from the ovine rumen wall. Appl. Environ. Microbiol. 41: 1020-1028. https://doi.org/10.1128/aem.41.4.1020-1028.1981
- Counotte GH, Prins RA, Janssen RH, DeBie MJ. 1981. Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Appl. Environ. Microbiol. 42: 649-655. https://doi.org/10.1128/aem.42.4.649-655.1981
- Jeyanathan J, Martin C, Morgavi DP. 2014. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8: 250-261. https://doi.org/10.1017/S1751731113002085
- Vyas D, McGeough EJ, Mohammed R, McGinn SM, McAllister TA, Beauchemin KA. 2014. Effects of Propionibacterium strains on ruminal fermentation, nutrient digestibility and methane emissions in beef cattle fed a corn grain finishing diet. Animal 8: 1807-1815. https://doi.org/10.1017/S1751731114001657
- Alazzeh AY, Sultana H, Beauchemin KA, Wang Y, Holo H, Harstad OM, et al. 2012. Using strains of Propionibacteria to mitigate methane emissions in vitro. Acta Agric. Scand. A-Anim. Sci. 62: 263-272.
- Vyas D, Alazzeh A, McGinn SM, McAllister TA, Harstad OM, Holo H, et al. 2015. Enteric methane emissions in response to ruminal inoculation of Propionibacterium strains in beef cattle fed a mixed diet. Anim. Prod. Sci. 56: 1035-1040. https://doi.org/10.1071/an14801
- Chen J, Harstad OM, McAllister T, Dorsch P, Holo H. 2020. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agric. Scand. A-Anim. Sci. 69: 169-175.
- Vyas D, McGeough EJ, McGinn SM, McAllister TA, Beauchemin KA. 2014. Effect of Propionibacterium spp. on ruminal fermentation, nutrient digestibility, and methane emissions in beef heifers fed a high-forage diet. J. Anim. Sci. 92: 2192-2201. https://doi.org/10.2527/jas.2013-7492
- Jeyanathan J, Martin C, Eugene M, Ferlay A, Popova M, Morgavi DP. 2019. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Anim. Sci. Biotechnol. 10: 41. https://doi.org/10.1186/s40104-019-0342-9
- Drake HL, Gossner AS, Daniel SL. 2008. Old acetogens, new light. Annal. NY Acad. Sci. 1125: 100-128. https://doi.org/10.1196/annals.1419.016
- Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F. 2007. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl. Environ. Microbiol. 73: 6391-6403. https://doi.org/10.1128/AEM.00181-07
- Ragsdale SW, Pierce E. 2008. Acetogenesis and the wood-ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784: 1873-1898. https://doi.org/10.1016/j.bbapap.2008.08.012
- Le Van TD, Robinson JA, Ralph J, Greening RC, Smolenski WJ, Leedle JA, et al. 1998. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Appl. Environ. Microbiol. 64: 3429-3436. https://doi.org/10.1128/aem.64.9.3429-3436.1998
- Henderson G, Naylor GE, Leahy SC, Janssen PH. 2010. Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl. Environ. Microbiol. 76: 2058-2066. https://doi.org/10.1128/AEM.02580-09
- Morvan B, Bonnemoy F, Fonty G, Gouet P. 1996. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr. Microbiol. 32: 129-133. https://doi.org/10.1007/s002849900023
- Lopez S, McIntosh FM, Wallace RJ, Newbold CJ. 1999. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim. Feed Sci. Technol. 78: 1-9. https://doi.org/10.1016/S0377-8401(98)00273-9
- Richard SH, Thomas EH. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471. https://doi.org/10.1128/mr.60.2.439-471.1996
- Pandey VC, Singh JS, Singh DP, Singh RP. 2014. Methanotrophs: promising bacteria for environmental remediation. Int. J. Environ. Sci Technol. 11: 241-250. https://doi.org/10.1007/s13762-013-0387-9
- Sazinsky MH, Lippard SJ. 2015. Methane monooxygenase: functionalizing methane at iron and copper. Met. Ions Life Sci. 15: 205-256. https://doi.org/10.1007/978-3-319-12415-5_6
- Kalyuzhnaya MG, Puri AW, Lidstrom ME. 2015. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29: 142-152. https://doi.org/10.1016/j.ymben.2015.03.010
- Dalton H. 1992. Methane oxidation by methanotrophs. In Methane and methanol utilizers (pp. 85-114). Springer. Boston, MA. USA.
- Finn D, Ouwerkerk D, Klieve A. 2012. Methanotrophs from natural ecosystems as biocontrol agents for ruminant methane emissions. Govt. report. Australia. The University of Queensland.
- Kajikawa H, Valdes C, Hillman K, Wallace RJ, J. Newbold C. 2003. Methane oxidation and its coupled electron-sink reactions in ruminal fluid. Lett. Appl. Microbiol. 36: 354-357. https://doi.org/10.1046/j.1472-765X.2003.01317.x
- Mitsumori M, Ajisaka N, Tajima K, Kajikawa H, Kurihara M. 2002. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 35: 251-255. https://doi.org/10.1046/j.1472-765X.2002.01172.x
- Valdes C, Newbold CJ, Hillman K, Wallace RJ. 1996. Evidence for methane oxidation in rumen fluid in vitro. In Annales De Zootechnie. Vol. 45. pp. 351-351. https://doi.org/10.1051/animres:19960680
- Stocks PK, McCleskey CS. 1964. Morphology and physiology of Methanomonas methanooxidans. J. Bacteriol. 88: 1071-1077. https://doi.org/10.1128/jb.88.4.1071-1077.1964
- Khatri K, Mohite J, Pandit P, Bahulikar RA, Rahalkar MC. 2021. Isolation, description and genome analysis of a putative novel Methylobacter Species ('Ca. Methylobacter coli') isolated from the faeces of a blackbuck (Indian antelope). Microbiol. Res. 12: 513-523. https://doi.org/10.3390/microbiolres12020035