DOI QR코드

DOI QR Code

An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine

  • Li, Wenyu (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Yin, Fan (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Bu, Zixuan (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Liu, Yuying (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Zhang, Yongqing (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Chen, Xiabing (Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology) ;
  • Li, Shaowen (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Li, Lu (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Zhou, Rui (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) ;
  • Huang, Qi (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
  • Received : 2021.07.29
  • Accepted : 2022.02.09
  • Published : 2022.03.28

Abstract

Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China [31802211] and the National Key Research and Development Program of China [2018YFE0101600].

References

  1. Ding C, Ma J, Dong Q, Liu Q. 2018. Live bacterial vaccine vector and delivery strategies of heterologous antigen: a review. Immunol. Lett. 197: 70-77. https://doi.org/10.1016/j.imlet.2018.03.006
  2. Lin IY, Van TT, Smooker PM. 2015. Live-attenuated bacterial vectors: Tools for vaccine and therapeutic agent delivery. Vaccines (Basel) 3: 940-972. https://doi.org/10.3390/vaccines3040940
  3. Jiang H, Hu Y, Yang M, Liu H, Jiang G. 2017. Enhanced immune response to a dual-promoter anti-caries DNA vaccine orally delivered by attenuated Salmonella typhimurium. Immunobiology 222: 730-737. https://doi.org/10.1016/j.imbio.2017.01.007
  4. Gopal GJ, Kumar A. 2013. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 32: 419-425. https://doi.org/10.1007/s10930-013-9502-5
  5. Jia B, Jeon CO. 2016. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol. 6: 160196. https://doi.org/10.1098/rsob.160196
  6. Rosano GL, Ceccarelli EA. 2014. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 5: 172. https://doi.org/10.3389/fmicb.2014.00172
  7. Burdette LA, Leach SA, Wong HT, Tullman-Ercek D. 2018. Developing Gram-negative bacteria for the secretion of heterologous proteins. Microb Cell Fact. 17: 196. https://doi.org/10.1186/s12934-018-1041-5
  8. Anne J, Economou A, Bernaerts K. 2017. Protein secretion in Gram-positive bacteria: From multiple pathways to biotechnology. Curr. Top. Microbiol. Immunol. 404: 267-308.
  9. Karlsson AJ, Lim HK, Xu H, Rocco MA, Bratkowski MA, Ke A, et al. 2012. Engineering antibody fitness and function using membrane-anchored display of correctly folded proteins. J. Mol. Biol. 416: 94-107. https://doi.org/10.1016/j.jmb.2011.12.021
  10. Natale P, Bruser T, Driessen AJ. 2008. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. Biochim. Biophys. Acta 1778: 1735-1756. https://doi.org/10.1016/j.bbamem.2007.07.015
  11. Palmer T, Berks BC. 2012. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10: 483-496. https://doi.org/10.1038/nrmicro2814
  12. Nicolay T, Vanderleyden J, Spaepen S. 2015. Autotransporter-based cell surface display in Gram-negative bacteria. Crit. Rev. Microbiol. 41: 109-123. https://doi.org/10.3109/1040841X.2013.804032
  13. Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. 2016. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat. Microbiol. 2: 16183. https://doi.org/10.1038/nmicrobiol.2016.183
  14. Akeda Y, Kimura T, Yamasaki A, Kodama T, Iida T, Honda T, et al. 2012. Functional cloning of Vibrio parahaemolyticus type III secretion system 1 in Escherichia coli K-12 strain as a molecular syringe. Biochem. Biophys. Res. Commun. 427: 242-247. https://doi.org/10.1016/j.bbrc.2012.09.018
  15. Zhu C, Ruiz-Perez F, Yang Z, Mao Y, Hackethal VL, Greco KM, et al. 2006. Delivery of heterologous protein antigens via hemolysin or autotransporter systems by an attenuated ler mutant of rabbit enteropathogenic Escherichia coli. Vaccine 24: 3821-3831. https://doi.org/10.1016/j.vaccine.2005.07.024
  16. Xu C, Zhang BZ, Lin Q, Deng J, Yu B, Arya S, et al. 2018. Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection. BMC Infect. Dis. 18: 195. https://doi.org/10.1186/s12879-018-3104-y
  17. Palmer T, Stansfeld PJ. 2020. Targeting of proteins to the twin-arginine translocation pathway. Mol. Microbiol. 113: 861-871. https://doi.org/10.1111/mmi.14461
  18. Alanen HI, Walker KL, Lourdes Velez Suberbie M, Matos CF, Bonisch S, Freedman RB, et al. 2015. Efficient export of human growth hormone, interferon α2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation. Biochim. Biophys. Acta 1853: 756-763. https://doi.org/10.1016/j.bbamcr.2014.12.027
  19. Browning DF, Richards KL, Peswani AR, Roobol J, Busby SJW, Robinson C. 2017. Escherichia coli "TatExpress" strains super-secrete human growth hormone into the bacterial periplasm by the Tat pathway. Biotechnol. Bioeng. 114: 2828-2836. https://doi.org/10.1002/bit.26434
  20. Albiniak AM, Matos CF, Branston SD, Freedman RB, Keshavarz-Moore E, Robinson C. 2013. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli. FEBS J. 280: 3810-3821. https://doi.org/10.1111/febs.12376
  21. Wang Y, Yang W, Wang Q, Qu J, Zhang Y. 2013. Presenting a foreign antigen on live attenuated Edwardsiella tarda using twin-arginine translocation signal peptide as a multivalent vaccine. J. Biotechnol. 168: 710-717. https://doi.org/10.1016/j.jbiotec.2013.08.018
  22. Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M. 2014. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. Microbes Infect. 3: e45.
  23. Tan C, Zhang A, Chen H, Zhou R. 2019. Recent proceedings on prevalence and pathogenesis of Streptococcus suis. Curr. Issues Mol. Biol. 32: 473-520.
  24. Segura M. 2015. Streptococcus suis vaccines: candidate antigens and progress. Expert Rev. Vaccines 14: 1587-1608. https://doi.org/10.1586/14760584.2015.1101349
  25. Gao W, Yin J, Bao L, Wang Q, Hou S, Yue Y, et al. 2018. Engineering extracellular expression systems in Escherichia coli based on transcriptome analysis and cell growth state. ACS Synth. Biol. 7: 1291-1302. https://doi.org/10.1021/acssynbio.7b00400
  26. Casadaban MJ. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104: 541-555. https://doi.org/10.1016/0022-2836(76)90119-4
  27. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173-1183. https://doi.org/10.1016/j.cell.2013.02.022
  28. Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang YJ, et al. 2015. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 31: 13-21. https://doi.org/10.1016/j.ymben.2015.06.006
  29. Huang Q, Alcock F, Kneuper H, Deme JC, Rollauer SE, Lea SM, et al. 2017. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Proc. Natl. Acad. Sci. USA 114: E1958-e1967.
  30. Ize B, Stanley NR, Buchanan G, Palmer T. 2003. Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol. Microbiol. 48: 1183-1193. https://doi.org/10.1046/j.1365-2958.2003.03504.x
  31. Li W, Liu L, Qiu D, Chen H, Zhou R. 2010. Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int. J. Med. Microbiol. 300: 482-488. https://doi.org/10.1016/j.ijmm.2010.04.018
  32. da Silva AJ, Zangirolami TC, Novo-Mansur MT, Giordano Rde C, Martins EA. 2014. Live bacterial vaccine vectors: an overview. Braz J. Microbiol. 45: 1117-1129. https://doi.org/10.1590/S1517-83822014000400001
  33. Nhan NT, Gonzalez de Valdivia E, Gustavsson M, Hai TN, Larsson G. 2011. Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microb Cell Fact. 10: 22. https://doi.org/10.1186/1475-2859-10-22
  34. Zhang J, Shi Z, Kong FK, Jex E, Huang Z, Watt JM, et al. 2006. Topical application of Escherichia coli-vectored vaccine as a simple method for eliciting protective immunity. Infect. Immun. 74: 3607-3617. https://doi.org/10.1128/IAI.01836-05
  35. Jones B, Pascopella L, Falkow S. 1995. Entry of microbes into the host: using M cells to break the mucosal barrier. Curr. Opin. Immunol. 7: 474-478. https://doi.org/10.1016/0952-7915(95)80091-3
  36. Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. 2001. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204: 572-581. https://doi.org/10.1078/0171-2985-00094
  37. Buttaro C, Fruehauf JH. 2010. Engineered E. coli as vehicles for targeted therapeutics. Curr. Gene Ther. 10: 27-33. https://doi.org/10.2174/156652310790945593
  38. Byrd W, Ruiz-Perez F, Setty P, Zhu C, Boedeker EC. 2017. Secretion of the Shiga toxin B subunit (Stx1B) via an autotransporter protein optimizes the protective immune response to the antigen expressed in an attenuated E. coli (rEPEC E22∆ler) vaccine strain. Vet. Microbiol. 211: 180-188. https://doi.org/10.1016/j.vetmic.2017.10.006
  39. Aguilera-Herce J, Garcia-Quintanilla M, Romero-Flores R, McConnell MJ, Ramos-Morales F. 2019. A Live Salmonella vaccine delivering PcrV through the Type III secretion system protects against Pseudomonas aeruginosa. mSphere 4: e00116-19.
  40. Berks BC, Palmer T, Sargent F. 2003. The Tat protein translocation pathway and its role in microbial physiology. Adv. Microb. Physiol. 47: 187-254. https://doi.org/10.1016/S0065-2911(03)47004-5
  41. Frain KM, Robinson C, van Dijl JM. 2019. Transport of folded proteins by the Tat system. Protein J. 38: 377-388. https://doi.org/10.1007/s10930-019-09859-y
  42. Huang Q, Palmer T. 2017. Signal peptide hydrophobicity modulates interaction with the twin-arginine translocase. mBio 8: e00909-17.
  43. Tarry M, Arends SJ, Roversi P, Piette E, Sargent F, Berks BC, et al. 2009. The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J. Mol. Biol. 386: 504-519. https://doi.org/10.1016/j.jmb.2008.12.043
  44. Chen T, Wang C, Hu L, Lu H, Song F, Zhang A, et al. 2021. Evaluation of the immunoprotective effects of IF-2 GTPase and SSU05-1022 as a candidate for a Streptococcus suis subunit vaccine. Future Microbiol. 16: 721-729. https://doi.org/10.2217/fmb-2020-0232
  45. Dumesnil A, Martelet L, Grenier D, Auger JP, Harel J, Nadeau E, et al. 2019. Enolase and dipeptidyl peptidase IV protein sub-unit vaccines are not protective against a lethal Streptococcus suis serotype 2 challenge in a mouse model of infection. BMC Vet. Res. 15: 448. https://doi.org/10.1186/s12917-019-2196-y
  46. Jacobs AA, van den Berg AJ, Loeffen PL. 1996. Protection of experimentally infected pigs by suilysin, the thiol-activated haemolysin of Streptococcus suis. Vet. Rec. 139: 225-228. https://doi.org/10.1136/vr.139.10.225
  47. Zhang A, Chen B, Mu X, Li R, Zheng P, Zhao Y, et al. 2009. Identification and characterization of a novel protective antigen, Enolase of Streptococcus suis serotype 2. Vaccine 27: 1348-1353. https://doi.org/10.1016/j.vaccine.2008.12.047
  48. Zhou Y, Wang Y, Deng L, Zheng C, Yuan F, Chen H, et al. 2015. Evaluation of the protective efficacy of four novel identified membrane associated proteins of Streptococcus suis serotype 2. Vaccine 33: 2254-2260. https://doi.org/10.1016/j.vaccine.2015.03.038