DOI QR코드

DOI QR Code

Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21

  • Kaoplod, Watcharasorn (Department of Biology, Faculty of Science, Thaksin University) ;
  • Chaijak, Pimprapa (Microbial Fuel Cell & Bioremediation Laboratory, Faculty of Science, Thaksin University)
  • Received : 2022.01.10
  • Accepted : 2022.02.15
  • Published : 2022.03.28

Abstract

The cellulose-fed microbial fuel cell (MFC) is a biotechnological process that directly converts lignocellulosic materials to electricity without combustion. In this study, the cellulose-fed, MFC-integrated thermophilic bacterium, Bacillus sp. WK21, with endoglucanase and exoglucanase activities of 1.25 ± 0.08 U/ml and 0.95 ± 0.02 U/ml, respectively, was used to generate electricity at high temperatures. Maximal current densities of 485, 420, and 472 mA/m2 were achieved when carboxymethyl cellulose, avicel cellulose, and cellulose powder, respectively, were used as substrates. Their respective maximal power was 94.09, 70.56, and 89.30 mW/m3. This study demonstrates the value of the novel use of a cellulase-producing thermophilic bacterium as a biocatalyst for electricity generation in a cellulose-fed MFC.

Keywords

Acknowledgement

This work was supported by the Department of Biology, Faculty of Science, Thaksin University.

References

  1. Agarwal AK. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion energies. Prog. Energy. Combust. Sci. 33: 233-271. https://doi.org/10.1016/j.pecs.2006.08.003
  2. Weng JK, Li X, Bonawitz ND, Chapple C. 2008. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotechnol. 19: 166-172. https://doi.org/10.1016/j.copbio.2008.02.014
  3. Robak K, Balcerek M. 2018. Review of second generation bioethanol production from residual biomass. Food Technol. Biotechnol. 56: 174-187.
  4. Bayer EA, Chanzy H, Lamed R, Shoham Y. 1998. Cellulose, cellulase, and cellulosomes. Curr. Opin. Struct. Biol. 8: 548-557. https://doi.org/10.1016/S0959-440X(98)80143-7
  5. Dey N, Vickram S, Thanigaivel S, Subbaiya R, Kim W, Karmegam N, et al. 2022. Nanomaterials for transforming barrier properties of lignocellulosic biomass towards potential applications - A review. Fuel 316: 123444. https://doi.org/10.1016/j.fuel.2022.123444
  6. Hobdey SE, Donohoe BS, Brunecky R, Himmel ME, Bomble YJ. 2015. Direct microbial conversion of biomass to advanced biofuels, pp. 111-127. 1st Ed. Elsevier B.V., Golden, Colorado.
  7. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA. 2009. Thermophilic ethanologenesis: Future prospects for second-generation bioethanol production. Trends Biotechnol. 27: 398-405. https://doi.org/10.1016/j.tibtech.2009.03.006
  8. Gupta GN, Srivastava S, Khare SK, Prakash V. 2014. Extremophiles: An overview of microorganism from extreme environment. Int. J. Agric. Environ. Biotechnol. 7: 371-380. https://doi.org/10.5958/2230-732X.2014.00258.7
  9. Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, et al. 2009. Clostridium clariflavum sp. nov. and Clostricium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 59: 1764-1770. https://doi.org/10.1099/ijs.0.003483-0
  10. Almatouq A, Babatunde AO, Khajah M, Webster G, Alfodari M. 2020. Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells. J. Water Process Eng. 34: 101140. https://doi.org/10.1016/j.jwpe.2020.101140
  11. Thulasinathan B, Jayabalan T, Arumugam N, Kulanthaisamy MR, Kim P, Govarthanan M, et al. 2022. Wastewater sunstrates in microbial fuel cell system for carbon-neutral bioelectricity generation: An overview. Fuel 317: 123369. https://doi.org/10.1016/j.fuel.2022.123369
  12. Toczylowska-Maminski R, Szymona K, Madaj H, Wong WZ, Bala A, Brutkowski W, et al. 2015. Cellulolytic and electrogenic activity of Enterobacter cloacae in mediatorless microbial fuel cell. Appl. Energy 160: 88-93. https://doi.org/10.1016/j.apenergy.2015.09.067
  13. Toczylowska-Maminski R, Szymona K, Krol P, Gliniewicz K, Pielech-Przybylska K, Kloch M, et al. 2018. Evolving microbial communities in cellulose-fed microbial fuel cell. Energies 11: 124. https://doi.org/10.3390/en11010124
  14. Islam F, Roy N. 2018. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res. Notes 11: 445. https://doi.org/10.1186/s13104-018-3558-4
  15. Junior FLS, Dias ACF, Fasanella CC, Taketani RG, Lima AOS, Melo IS, et al. 2013. Endo- and exoglucanase activities in bacteria from mangrove sediment. Braz. J. Microbiol. 44: 969-976. https://doi.org/10.1590/S1517-83822013000300048
  16. Parkash A, Aziz S, Soomro SA. 2015. Impact of salt concentration on electricity generation using hostel sludge based dual chambered microbial fuel cell. J. Bioprocess. Biotech. 5: 1000252.
  17. You S, Zhao Q, Zhang J, Jiang J, Zhao S. 2006. A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sourc. 162: 1409-1415. https://doi.org/10.1016/j.jpowsour.2006.07.063
  18. Kazeem MO, Shah UKM, Baharuddin AS, Rahman AA. 2017. Prospecting agro-waste cocktail: supplementation for cellulase production by a newly isolated thermophilic Bacillus licheniformis 2D55. Appl. Biochem. Biotechnol. 182: 1318-1340. https://doi.org/10.1007/s12010-017-2401-z
  19. Padiha IQM, Carvalho LCT, Dias PVS, Grisi TCSL, Honorato da Silva FL, Santos SFM, et al. 2015. Production and characterization of thermophilic carboxymethyl cellulase synthesized by Bacillus sp. growing on sugarcane bagasse in submerged fermentation. Braz. J. Chem. Eng. 32: 35-42. https://doi.org/10.1590/0104-6632.20150321s00003298
  20. Meng F, Ma L, Ji S, Yang W, Cao B. 2014. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Lett. Appl. Microbiol. 59: 306-312. https://doi.org/10.1111/lam.12276
  21. Hajiabadi S, Mashreghi M, Bahrami AR, Ghazvini K, Matin MM. 2020. Isolation and molecular identification of cellulolytic bacteria from Dig Rostam hot spring and study of their cellulase activity. Biocell 44: 63-71. https://doi.org/10.32604/biocell.2020.08171
  22. Ganesan M, Mathivani Vinayakamoorthy R, Thankappan S, Muniraj I, Uthandi S. 2020. Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass. Biotechnol. Biofuels 13: 124. https://doi.org/10.1186/s13068-020-01764-2
  23. Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, et al. 2017. High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnol. Lett. 39: 123-131. https://doi.org/10.1007/s10529-016-2224-y
  24. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE. 2009. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75: 3673-3678. https://doi.org/10.1128/AEM.02600-08
  25. Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH. 2007. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97: 1398-1407. https://doi.org/10.1002/bit.21366
  26. Ishii S, Shimoyama T, Hotta Y, Watanabe K. 2008. Characterization of filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiol. 8: 6. https://doi.org/10.1186/1471-2180-8-6
  27. Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, et al. 2009. Bioaugmentation for electricity from corn stover biomass using microbial fuel cells. Environ. Sci. Technol. 43: 6088-6093. https://doi.org/10.1021/es900391b