Acknowledgement
This work was supported by the Istanbul Sabahattin Zaim University [Grant number BAP-1000-42 to B.M.].
References
- Gomes RJ, Borges M de F, Rosa M de F, Castro-Gomez RJH, Spinosa WA. 2018. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol. Biotechnol. 56: 139-151.
- Yamada Y. 2016. Systematics of acetic acid bacteria, pp. 1-50. In Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds.), Acetic Acid Bacteria: Ecology and Physiology, Springer, Tokyo, Japan.
- De Roos J, De Vuyst L. 2018. Acetic acid bacteria in fermented foods and beverages. Curr. Opin. Biotechnol. 49: 115-119. https://doi.org/10.1016/j.copbio.2017.08.007
- Gullo M, La China S, Falcone PM, Giudici P. 2018. Biotechnological production of cellulose by acetic acid bacteria: Current state and perspectives. Appl. Microbiol. Biotechnol. 102: 6885-6898. https://doi.org/10.1007/s00253-018-9164-5
- Hasdemir M. 2020. Product Report Apricot, pp. 1- 47. Ministry of Agriculture and Forestry, Institute of Agricultural Economics and Policy Development, Ankara.
- Akin EB, Karabulut I, Topcu A. 2008. Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem. 107: 939-948. https://doi.org/10.1016/j.foodchem.2007.08.052
- Hidalgo C, Mateo E, Mas A, Torija MJ. 2012. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki). Food Microbiol. 30: 98-104. https://doi.org/10.1016/j.fm.2011.12.017
- Valera MJ, Laich F, Gonzalez SS, Torija MJ, Mateo E, Mas A. 2011. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands. Int. J. Food Microbiol. 151: 105-112. https://doi.org/10.1016/j.ijfoodmicro.2011.08.007
- Camu N, Gonzalez A, De Winter T, Van Schoor A, De Bruyne K, Vandamme P, et al. 2008. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl. Environ. Microbiol. 74: 86-98. https://doi.org/10.1128/AEM.01512-07
- Lisdiyanti P, Katsura K, Potacharoen W, Navarro RR, Yamada Y, Uchimura T, et al. 2003. Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. Microbiol. Cult. Collect. 19: 91-99.
- Gullo M, Caggia C, De Vero L, Giudici P. 2006. Characterization of acetic acid bacteria in "traditional balsamic vinegar". Int. J. Food Microbiol. 106: 209-212. https://doi.org/10.1016/j.ijfoodmicro.2005.06.024
- Versalovic J, Schneider M, Bruijn FJ, Lupski JR. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25-40.
- Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York.
- Ruiz A, Poblet M, Mas A, Guillamon J. 2000. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int. J. Sys. Evol. 50: 1981-1987. https://doi.org/10.1099/00207713-50-6-1981
- Huang CH, Lee FL, Liou JS. 2010. Rapid discrimination and classification of the Lactobacillus plantarum group based on a partial dnaK sequence and DNA fingerprinting techniques. Antonie Van Leeuwenhoek 97: 289-296. https://doi.org/10.1007/s10482-009-9409-5
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
- Chen Y, Bai Y, Li D, Wang C, Xu N, Hu Y. 2016. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei. World J. Microbiol. Biotechnol. 32: 14. https://doi.org/10.1007/s11274-015-1961-8
- Gomes FP, Silva NHCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, et al. 2013. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenerg. 55: 205-211. https://doi.org/10.1016/j.biombioe.2013.02.004
- Hestrin S, Schramm M. 1954. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58: 345-352. https://doi.org/10.1042/bj0580345
- Aswini K, Gopal NO, Uthandi S. 2020. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol. 20: 46. https://doi.org/10.1186/s12896-020-00639-6
- Gonzalez A, Mas A. 2011. Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int. J. Food Microbiol. 147: 217-222. https://doi.org/10.1016/j.ijfoodmicro.2011.04.005
- Mateo E, Torija MJ, Mas A, Bartowsky EJ. 2014. Acetic acid bacteria isolated from grapes of South Australian vineyards. Int. J. Food Microbiol. 178: 98-106. https://doi.org/10.1016/j.ijfoodmicro.2014.03.010
- Trcek J. 2005. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene. Syst. Appl. Microbiol. 28: 735-745. https://doi.org/10.1016/j.syapm.2005.05.001
- Yamada Y, Akita M. 1984. An electrophoretic comparison of enzymes in strains of Gluconobacter species. J. Gen. Appl. Microbiol. 30: 115-126. https://doi.org/10.2323/jgam.30.115
- Navarro D, Mateo E, Torija M, Mas A. 2013. Acetic acid bacteria in grape must. Acetic Acid Bacteria 2: e4.
- Kommanee J, Akaracharanya A, Tanasupawat S, Malimas T, Yukphan P, Nakagawa Y. et al. 2008. Identification of Gluconobacter strains isolated in Thailand based on 16S-23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol. 58: 741-747. https://doi.org/10.1007/BF03175584
- Cleenwerck I, De Vos P, De Vuyst L. 2010. Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 60: 2277-2283. https://doi.org/10.1099/ijs.0.018465-0
- Qin H, Sun Q, Pan X, Qiao Z, Yang H. 2016. Microbial diversity and biochemical analysis of Suanzhou: A traditional Chinese fermented cereal Gruel. Front. Microbiol. 25: 1311.
- Visintin S, Alessandria V, Valente A, Dolci P, Cocolin L. 2016. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa. Int. J. Food Microbiol. 216: 69-78. https://doi.org/10.1016/j.ijfoodmicro.2015.09.004
- Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K. 2001. Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J. Gen. Appl. Microbiol. 47: 119-131. https://doi.org/10.2323/jgam.47.119
- Saichana N, Matsushita K, Adachi O, Frebort I, Frebortova J. 2015. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol. Adv. 33: 1260-1271. https://doi.org/10.1016/j.biotechadv.2014.12.001
- Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O. 1997. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci. Biotechnol. Biochem. 61: 138-145. https://doi.org/10.1271/bbb.61.138
- Matsutani M, Matsumoto N, Hirakawa H, Shiwa Y, Yoshikawa H, Okamoto-Kainuma A, et al. 2020. Comparative genomic analysis of closely related Acetobacter pasteurianus strains provides evidence of horizontal gene transfer and reveals factors necessary for thermotolerance. J. Bacteriol. 202: e00553-19.
- Soemphol W, Deeraksa A, Matsutani M, Yakushi T, Toyama H, Adachi O, et al. 2011. Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci. Biotechnol. Biochem. 75: 1921-1928. https://doi.org/10.1271/bbb.110310
- Gullo M, Giudici P. 2008. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. Int. J. Food Microbiol. 125: 46-53. https://doi.org/10.1016/j.ijfoodmicro.2007.11.076
- Ndoye B, Lebecque S, Dubois-Dauphin R, Tounkara L, Guiro AT, Kere C, et al. 2006. Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme Microb. Technol. 39: 916-923. https://doi.org/10.1016/j.enzmictec.2006.01.020
- Yuan Y, Feng F, Chen L, Yao Q, Chen K. 2013. Directional isolation of ethanol-tolerant acetic acid bacteria from industrial fermented vinegar. Eur. Food Res. Technol. 236: 573-578. https://doi.org/10.1007/s00217-012-1885-6