Acknowledgement
This study was supported by research funds from Nambu University, 2021. This work was supported by a grant (NIBR201701202) from the "Regional Demand-Customized R&D Project in Jeollanam-do" in 2020 funded by the Jeollanam-do, Republic of Korea.
References
- D. Vasic, F. Costa & E. Sarraute. (2006). Piezoelectric Transformer for Integrated MOSFET and IGBT Gate Driver. IEEE TRANSACTIONS ON POWER ELECTRONICS, 21(1), 56-65. DOI : 10.1109/TPEL.2005.861121
- M. J. Johnson, D. R. Boris, T. B. Petrova & S. G. Walton. (2019). Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer. IEEE Transactions on Plasma Science. 47(1), 434-444. DOI : 10.1109/TPS.2018.2870345
- S. Portugal, S. Roy & J. Lin. (2017). Functional relationship between material property, applied frequency and ozone generation for surface dielectric barrier discharges in atmospheric air, Sci Rep 7, 6388. DOI : 10.1038/s41598-017-06038-w
- K. Shimizu & M. Blajan. (2015). Basic study on force induction using dielectric barrier microplasma array, Japanese Journal of Applied Physics, 54(1S), 01AA07 . DOI : 10.7567/JJAP.54.01AA07
- M. Babija, T. Gotszalka, Z.W. Kowalskia, K. Nitscha, J. Silberringb & M. Smoluchb (2014). Atmospheric Pressure Plasma Jet for Mass Spectrometry. Proc. of the 8th International Conference NEET 2013, Zakopane, Poland, 1821-2013. DOI : 10.12693/APhysPolA.125.1260
- M. J. Johnson, D. R. Boris, T. B. Petrova & S. G. Walton. (2019). Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer. IEEE Transactions on Plasma Science. 47(1), 434-444. DOI : 10.1109/TPS.2018.2870345
- S. J. Choi, K. C. Lee & B. H. Cho. (2005). Design of Fluorescent Lamp Ballast With PFC Using a Power Piezoelectric Transformer. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 52(6). 1573-1581. DOI : 10.1109/TIE.2005.858726
- C. Tendero, C. Tixiera, P. Tristanta & J. Desmaisona & P. Leprince. (2006). Atmospheric pressure plasmas: A review, Atomic Spectroscopy, 61(1), 2006, 2-30. DOI : 10.1016/j.sab.2005.10.003
- L. Gan, S. Zhang, D. Poorun, D. Liu, X. Lu, M. He, X. Duan & H. Chen. (2018). Medical applications of nonthermal atmospheric pressure plasma in dermatology. JDDG, J. Deutschen Dermatol. Gesellschaft, 16(1), 7-13. DOI : 10.1111/ddg.13373
- S. Portugal1, S. Roy & J. Lin. (2017). Functional relationship between material property, applied frequency and ozone generation for surface dielectric barrier discharges in atmospheric air. Scientific REPOrtS, 1-11. DOI : 10.1038/s41598-017-06038-w
- Y. Ju, J. K. Lefkowitz & C. B. Reuter et al. (2016) Plasma Assisted Low Temperature Combustion. Plasma Chem Plasma Process, 36, 85-105. DOI : 10.1007/s11090-015-9657-2
- Y. Setsuhara. (2016). Low-temperature atmospheric-pressure plasma sources for plasma medicine. Archives of biochemistry and biophysics, 605, 3-10. DOI : 10.1016/j.abb.2016.04.009
- H. X. Wang, Y. Long & Y. Y. J. (2020). Design of New Submerged Ozone Generator, ICAEER 2020, Volume 194, 1-4. DOI : 10.1051/e3sconf/202019405011
- N. Mastanaiah, P. Banerjee, S. Roy A. Johnson & Subrata Roy. (2013) Examining the Role of Ozone in Surface Plasma Sterilization Using Dielectric Barrier Discharge (DBD) Plasma. Plasma Process Polymer, 10(12), 1120-1133. DOI : 10.1002/ppap.201300108
- E. Grignani et al. (2021). Safe and Effective Use of Ozone as Air and Surface Disinfectant in the Conjuncture of Covid-19. Gases, 1(1), 19-32. DOI : 10.3390/gases1010002