Acknowledgement
This paper was supported by 2022 Baekseok University Research Fund
References
- S. S. Chae, R. Mativenga, J. Y. Paik, M. Attique & T. S. Chung. (2020). DSFTL: An efficient FTL for flash memory based storage systems. Electronics 9(1), 145, https://doi.org/10.3390/electronics9010145
- W. Xie, Y. Chen & P. C. Poth. (2017). ASA-FTL: An adaptive separation aware flash translation layer for solid state drives. Parallel Computing, 61. 3-17. https://doi.org/10.1016/j.parco.2016.10.006
- I. B. Zion. (2020). Key-value FTL over open channel SSD, 12th ACM International Conference on Systems and Storage. 192-192.
- H. S. Lee, H. S. Yun & D. H. Lee (2011). HFTL: hybrid flash translation layer based on hot data identification for flash memory. IEEE Transactions on Consumer Electronics, (4), 2005-2011. https://doi.org/10.1109/TCE.2009.5373762
- H. S. Lee & D. H. Lee. (2010). An efficient index buffer management scheme for implementing a B-tree on NAND flash memory. Data & Knowledge Engineering. 69(9), 901-916. https://doi.org/10.1016/j.datak.2010.03.004
- H. S. Lee, S. W. Park & D. H. Lee (2013). RMSS: an efficient recovery management scheme on NAND flash memory based solid state disk. IEEE Transactions on Consumer Electronics, 59(1), 107-112. https://doi.org/10.1109/TCE.2013.6490248
- S. Kim & Y. Son. (2021). Optimizing Key-Value Stores for Flash-Based SSDs via Key Reshaping. IEEE Access 9, 115135~115144. https://doi.org/10.1109/ACCESS.2021.3105428
- J. H. Park, D. J. Park, T. S. Chung & S. W. Lee. (2021). A Crash Recovery Scheme for a Hybrid Mapping FTL in NAND Flash Storage Devices. Electronics, 10(3), 327. https://doi.org/10.3390/electronics10030327
- M. Sacks. (2021). Incentives for the over-provision of public goods. Journal of Economic Behavior & Organization, 191, 197-213. https://doi.org/10.1016/j.jebo.2021.08.033
- R. Liu, Z. Tan, L. Long, Y. Wu, Y. Tan & D. Liu. (2022) Improving Fairness for SSD Devices through DRAM Over-Provisioning Cache Management. IEEE Transactions on Parallel and Distributed Systems, 1-1.
- Q. Li et al. (2021). RAMBO: Resource Allocation for Microservices Using Bayesian Optimization. IEEE Computer Architecture Letters, 20(1), 46-49. https://doi.org/10.1109/LCA.2021.3066142
- S. Elashri & A. Azim. (2021). Work-in-Progress: An Energy-Aware Optimization Model for Real-Time Systems Analysis and Design. International Conference on Embedded Software (EMSOFT), 45-46.
- H. Shen & L. Chen. (2018). Resource Demand Misalignment: An Important Factor to Consider for Reducing Resource Over-Provisioning in Cloud Datacenters. IEEE/ACM Transactions on Networking, 26(3), 1207-1221. https://doi.org/10.1109/tnet.2018.2823642
- L. Chen & H. Shen. (2017). Considering resource demand misalignments to reduce resource over-provisioning in cloud datacenters. IEEE Conference on Computer Communications. 1-9.
- D. Bega, M. Gramaglia, M. Fiore, A. Banchs & X. Costa-Perez. (2020). DeepCog: Optimizing Resource Provisioning in Network Slicing With AI-Based Capacity Forecasting. IEEE Journal on Selected Areas in Communications, 38(2), 361-376. https://doi.org/10.1109/jsac.2019.2959245