DOI QR코드

DOI QR Code

PID 제어 학습을 위한 시뮬레이션 기반의 교육 모델

Simulation-based Education Model for PID Control Learning

  • 서현호 (공주대학교 컴퓨터공학과) ;
  • 김재웅 (공주대학교 컴퓨터공학부) ;
  • 박성현 (공주대학교 컴퓨터공학과)
  • Seo, Hyeon-Ho (Dept. of Computer Engineering, Kongju National University) ;
  • Kim, Jae-Woong (Dept. of Computer Science & Engineering, Kongju National University) ;
  • Park, Seong-Hyun (Dept. of Computer Engineering, Kongju National University)
  • 투고 : 2021.12.10
  • 심사 : 2022.03.20
  • 발행 : 2022.03.28

초록

최근 4차 산업혁명으로 스마트팩토리를 구성하는 요소 기술의 중요성이 높아지고 있으며, 이러한 기술들을 학습하기 위한 도구로 시뮬레이션이 널리 이용되고 있다. 특히 PID제어는 실제 응용 분야에서 다양하게 사용되고 있는 자동제어 기법으로서, 대부분 특정 상황에서 수학적 모델을 분석하거나 제어기가 내장된 애플리케이션 개발에 대한 연구가 이루어지고 있으며, 실제 교육적인 환경에서는 PID 제어 원리뿐만 아니라, 게인 값 조정 및 제어기 사용 방법 등에 대한 PID 시뮬레이터 교육이 필요하다. 본 논문에서는 3D 시뮬레이션을 통해 다양한 PID 제어의 교육과 실습이 가능한 모델을 제안 한다. 제안 모델은 가상의 Ball과 Fan을 구현하여 Fan에서 발생한 공기 압력에 의해 Ball에 양력이 받을 수 있도록 시스템을 구성하여 PID 제어를 실시하였다. 이때 Ball의 높이를 PID제어기의 각 게인 값에 따라 그래프로 표현 후 실제 시스템과의 비교를 진행하였으며, 이를 통해 실제 수업에 충분히 적용할 만한 만족한 결과를 확인 할 수 있었다. 제안 모델을 통해 급격히 증가하는 스마트팩토리의 요소 기술을 원격 수업 환경에서 다양한 방법으로 활용 될 수 있을 것으로 기대된다.

Recently, the importance of elemental technologies constituting smart factories is increasing due to the 4th Industrial Revolution, and simulation is widely used as a tool to learn these technologies. In particular, PID control is an automatic control technique used in various fields, and most of them analyze mathematical models in certain situations or research on application development with built-in controllers. In actual educational environment requires PID simulator training as well as PID control principles. In this paper, we propose a model that enables education and practice of various PID controls through 3D simulation. The proposed model implemented virtual balls and Fan and implemented PID control by configuring a system so that the force can be lifted by the air pressure generated in the Fan. At this time, the height of the ball was expressed in a graph according to each gain value of the PID controller and then compared with the actual system, and through this, satisfactory results sufficiently applicable to the actual class were confirmed. Through the proposed model, it is expected that the rapidly increasing elemental technology of smart factories can be used in various ways in a remote classroom environment.

키워드

참고문헌

  1. J. V. Nickerson, J. E. Corter, S. K. Esche & C. A. Chassapis, (2007). Model for evaluating the effectiveness of remote engineering laboratories and simulations in education. Computers & Education. 49(3), 708-725. DOI : 10.1016/j.compedu.2005.11.019
  2. H. S. Im & E. M. Im. (2021). The mediating effects of academic self-efficacy in the relationship between learning flow and self-directed learning that influences college online classes in COVID-19. J. Learn. Cent. Curric. Instr, 21, 183-194.
  3. J. Beese. (2014). Expanding learning opportunities for high school students with distance learning. American Journal of Distance Education. 28(4), 292-306. DOI : 10.1080/08923647.2014.959343
  4. C. S. Noe. (2020). A Study on the Simulation-Based Electric Control Panel Distance Learning Model. Journal of the Korea Convergence Society, 11(10), 31-36. https://doi.org/10.15207/JKCS.2020.11.10.031
  5. A. S. Chow & R. A. Croxton. (2017). Designing a Responsive e-Learning Infrastructure: Systemic Change in Higher Education. American Journal of Distance Education, 31(1), 20-42. DOI : 10.1080/08923647.2017.1262733
  6. S. Joksimovic, D. Gasevic, T. M. Loughin, V. Kovanovic & M. Hatala. (2015). Learning at distance: Effects of interaction traces on academic achievement. Computers & Education, 87, 204-217. DOI : 10.1016/j.compedu.2015.07.002
  7. V. Salyers, L. Carter, A. Carter, S. Myers & P. Barrett. (2014). The search for meaningful e-learning at Canadian universities: A multiinstitutional research study. The International Review of Research in Open and Distributed Learning. 15(6), 313-347. DOI : 10.19173/irrodl.v15i6.1713
  8. E. N. Zaborova, I. G. Glazkova & T. L. Markova, (2017). Distance learning: Students' perspective. Sociological Studies. 2(2), 131-139.
  9. C. Lytridis, A. Tsinakos & I. Kazanidis, (2018). ARTutor-an augmented reality platform for interactive distance learning. Education Sciences. 8(1), 6. DOI : 10.3390/educsci8010006
  10. B. Hekimoglu, S. Ekinci & S. Kaya. (2018). Optimal PID controller design of DC-DC buck converter using whale optimization algorithm. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), IEEE. 1-6. DOI : 10.1109/IDAP.2018.8620833
  11. S. Khubalkar, A. Junghare, M. Awar & S. Das. (2017). Modeling and control of a permanent-magnet brushless DC motor drive using a fractional order proportional-integral-derivative controller. Turkish Journal of Electrical Engineering & Computer Sciences. 25(5), 4223-4241. DOI : 10.3906/elk-1612-277
  12. K. H. Ang, G. Chong & Y. Li. (2005). PID control system analysis, design, and technology. IEEE transactions on control systems technology, 13(4), 559-576. DOI : 10.1109/TCST.2005.847331
  13. S. Thamizmani & S. Narasimman. (2014). Design of fuzzy PID controller for brushless DC motor. International Journal of Emerging Research in Management & Technology. 3(4), 66-75.
  14. J. M. Kim & Y. S. Choi. (2020). Effects of Simulation Practice Education with Problem-Based Learning on Nursing Students' Learning Attitudes, Satisfaction, Critical Thinking, and Problem-Solving Ability. Journal of Korean Society for Simulation in Nursing, 8(1), 31-41. https://doi.org/10.17333/JKSSN.2020.8.1.31
  15. S. W. Ha & J. Choi. (2020). The Learning Effect of Simulation Game Activities in Geography Classes : Focus on urban flood.
  16. W. S. Park. (2015, October). Development of the Virtual Plant Using Mitsubishi PLC Simulation and Unity Game Engine. In Proceedings of the Society of CAD/CAM Conference (pp. 153-159).
  17. G. W. Jin. (2020). AGV Distance Learning Model Based on Virtual Simulation. Journal of the Korea Convergence Society, 11(11), 41-46. https://doi.org/10.15207/JKCS.2020.11.11.041