DOI QR코드

DOI QR Code

Study of Reduction of Mismatch Loss of a Thermoelectric Generator

열전발전 시스템의 부정합손실 저감방안 연구

  • Choi, Taeho (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology) ;
  • Kim, Tae Young (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology)
  • 최태호 (서울과학기술대학교 기계자동차공학과) ;
  • 김태영 (서울과학기술대학교 기계자동차공학과)
  • Received : 2022.01.17
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

In this study, a multi-layer cascade (MLC) electrical array configuration method for thermoelectric generator consisting of plural number of thermoelectric modules (TEMs) was proposed to reduce mismatch loss caused by temperature maldistribution on the surfaces of the TEMs. To validate the effect of MLC on the mismatch loss reduction, a numerical model capable of reflecting multi-physics phenomena occuring in the TEMs was developed. MLC can be employed by placing a group of TEMs experiencing relatively low temperature differences in an electric layer with more electrical branches while locating a group of TEMs experiencing relatively high temperature differences in an electric layer with less electrical branches. The TEMs were classified using the temperature distribution obtained by the numerical model. A MLC with an optimal electrical branch ratio showed a 96.5% of electric power generation compared to an ideal case.

본 연구에서는 열전발전기에 장착된 열전소자 간의 불균일한 온도편차에 의해 발생하는 부정합 손실을 저감할 수 있는 Multi-layer Cascade (MLC) 전기연결 방법을 제안한다. MLC의 성능을 검증하기 위해 열유동 현상 뿐만 아니라 열전소자에서 발생하는 다중물리현상을 반영한 수치해석 모델을 개발하였다. MLC는 고온도차를 경험하는 소자와 저온도차를 경험하는 소자를 서로 다른 Layer에 배치하여 구현할 수 있으며, 고온도차 소자와 저온도차 소자의 분류에는 수치해석 모델을 통해 얻어진 소자별 고온부 표면 온도를 활용하였다. MLC를 구성하는 각 Layer의 전기분선 비율을 변화시키며 이상적인 열전발전 성능과의 비교를 통해 MLC의 부정합손실 저감특성을 확인하였다. 최적 분선비율로 구성한 MLC의 경우 이상적인 결과 대비 96.5%의 발전성능을 보였으며, 열원의 유량이 적거나 발전시스템의 크기가 증가하여 소자 간의 온도편차가 클수록 부정합손실 저감효과가 더욱 증가하는 것을 확인하였다.

Keywords

Acknowledgement

This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology).

References

  1. A. Casi, M. Araiz, L. Catalan & D. Astrain. (2021). Thermoelectric heat recovery in a real industry: From laboratory optimization to reality. Applied Thermal Engineering, 184, 116275. DOI : 10.1016/j.applthermaleng.2020.116275
  2. J. Wang, P. Cao, X. Li, X. Song, C. Zhao & L. Zhu. (2019). Experimental study on the influence of Peltier effect on the output performance of thermoelectric generator and deviation of maximum power point. Energy Converse and Manage, 200, 112074. DOI : 10.1016/j.enconman.2019.112074
  3. D. Luo, R. Wang, W. Yu & W. Zhou. (2020). A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery. Applied Energy, 270, 115181. DOI : 10.1016/j.apenergy.2020.115181
  4. N. Kempf & Y. Zhang. (2016). Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement. Energy Converse and Manage, 121, 224-231. DOI : 10.1016/j.enconman.2016.05.035
  5. M. He, E. Wang, Y. Zhang, W. Zhang, F. Zhang & C. Zhao. (2020). Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine. Applied Energy, 274, 115298. DOI : 10.1016/j.apenergy.2020.115298
  6. D. Luo, R. Wang, W. Yu & W. Zhou. (2020). A novel optimization method for thermoelectric module used in waste heat recovery. Energy Converse and Manage, 209, 112645. DOI : 10.1016/j.enconman.2020.112645
  7. A. Montecucco, J. Siviter Andrew & R. Knox. (2014). The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel. Applied Energy, 123, 47-54. DOI : 10.1016/j.apenergy.2014.02.030
  8. P. Fernandez-Yanez, O. Arms, A. Capetillo & S. Martinez-Martinez. (2018). Thermal analysis of a thermoelectric generator for light-duty diesel engines. Applied Energy, 226, 690-702. DOI : 10.1016/j.apenergy.2018.05.114
  9. I. R. Cozar, T. Pujol & M. Lehocky. (2018). Numerical analysis of the effects of electrical and thermal configurations of thermoelectric modules in large-scale thermoelectric generators. Applied Energy, 229, 264-280. DOI : 10.1016/j.apenergy.2018.07.116
  10. D. M. Rowe. (2006). Thermoelectric Handbook. Boca Raton. FL : CRC Press.
  11. A. Negash, T. Y. Kim & G. Cho. (2017). Effect of electrical array configuration of thermoelectric modules on waste heat recovery of thermoelectric generator. Sensors and Actuators A: Physical, 260, 212-219. DOI : 10.1016/j.sna.2017.04.016