DOI QR코드

DOI QR Code

Comparative study of Pb (II) adsorption from water on used cardboard and powdered activated carbon

  • Benhafsa, Fouad. Mekhalef (Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC) ;
  • Bouchama, Abdelghani. (Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC) ;
  • Chadli, Aicha. (Biotechnology applied laboratory to agriculture and environmental preservation, higher school of agronomy) ;
  • Tadjer, Belgacem. (Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC) ;
  • Addad, Djelloul. (Laboratoire des Eco Materiaux Fonctionnels et Nanostructures, Universite de Mohammed Boudiaf)
  • Received : 2021.10.24
  • Accepted : 2022.01.19
  • Published : 2022.03.25

Abstract

In the present study, we compared the adsorption capacity of Pb (II) from contaminated water of used cardboard (UC) and a commercial powdered activated carbon (PAC), the latter has been characterized by different techniques, namely X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), wavelength dispersion x-ray fluorescence (WDXRF), infrared spectroscopy (IR) and surface area B.E.T analyzer. The effect of various parameters, such as the pH, the contact time, the amount of adsorbent, and the temperature on the adsorption of Pb (II) on both materials was investigated. The Pb (II) adsorptions are perfectly described by a pseudo-second-order model, while the intraparticle diffusion is a decisive step after the first minutes of contact. The fit to the Langmuir and Redlich-Peterson models seems perfect for these adsorption reactions. (PAC) showed a greater affinity for Pb (II) compared to (UC) and the adsorption of Pb (II) ions is strongly pH-dependent, on the other hand, the increase in temperature doesn't have much influence on the two solids. This study showed that the capacity of (UC) to adsorb Pb (II) from an aqueous solution is greater than two-thirds of that of (PAC).

Keywords

References

  1. Allen, S.J., Mckay, G. and Khader, K.Y.H. (1989), "Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat", Environ. Pollut., 56(1), 39-50. https://doi.org/10.1016/0269-7491(89)90120-6.
  2. Alnajrani, M.N. and Alsager, O.A. (2020), "Removal of antibiotics from water by polymer of intrinsic microporosity: Isotherms, kinetics, thermodynamics, and adsorption mechanism", Sci. Rep., 10(1), 794. https://doi.org/10.1038/s41598-020-57616-4.
  3. Alshameri, A., Yan, C. and Lei, X. (2014), "Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: Preparation, characterization and thermodynamic", Micropor. Mesopor. Mater. J., 196, 145-157. https://doi.org/10.1016/j.micromeso.2014.05.008.
  4. Amarasinghe, B.M.W.P.K. and Williams, R.A. (2007), "Tea waste as a low-cost adsorbent for the removal of Cu and Pb from wastewater", Chem, Eng. J., 132(1-3), 299-309. https://doi.org/10.1016/j.cej.2007.01.016.
  5. Ayyappan, R., Carmalin Sophia, A., Swaminathan, K. and Sandhya, S. (2005), "Removal of Pb (II) from aqueous solution using carbon derived from agricultural wastes", Proc. Biochem., 40(3-4), 1293-1299. https://doi.org/10.1016/j.procbio.2004.05.007.
  6. Axtell, N.R., Sternberg, S.P. and Claussen, K. (2003), "Lead and nickel removal using microspora and lemna minor", Bioresour. Technol., 89(1), 41-48. https://doi.org/10.1016/S0960-8524(03)00034-8.
  7. Bai, S., Wang, T., Tian, Z., Cao, K. and Li, J. (2020), "Facile preparation of porous biomass charcoal from peanut shell as adsorbent", Sci. Rep., 10(1), 15845. https://doi.org/10.1038/s41598-020-72721-0.
  8. Battas, A., El Gaidoumi, A., Ksakas, A. and Kherbeche, A. (2019), "Adsorption study for the removal of nitrate from water using local clay", Sci. World J., 2019, 9529618. https://doi.org/10.1155/2019/9529618.
  9. Bharathi, S.K. and Ramesh, P.S. (2012), "Equilibrium, thermodynamic and kinetic studies on adsorption of a basic dye by citrullus lanatus rind", Iran J. Energ. Environ., 3(1), 23-34. https://doi.org/10.5829/idosi.ijee.2012.03.01.0130.
  10. Bouberka, Z., Kacha, S., Kameche, M., ElmalehL, S. and Derriche, Z. (2005), "Sorption study of an acid dye from an aqueous solutions using modified clays", J. Hazard. Mater., 119(1-3), 117-124. https://doi.org.10.1016/j.jhazmat.2004.11.026.
  11. Boulaiche, W., Hamdi, B. and Trari, M. (2019), "Removal of heavy metals by chitin: Equilibrium, kinetic and thermodynamic studies", Appl. Water Sci., 9(2), 39. https://doi.org/10.1007/s13201-019-0926-8
  12. Briao, G.D., de Andrade, J.R., da Silva, M.G.C. and Viera. M.C.A. (2020), "Removal of toxic metals from water using chitosan-based magnetic adsorbents", Environ. Chem. Lett., 18(4), 1145-1168. https://doi.org/10.1007/s10311-020-01003-y.
  13. Chionyedua, T.O., Cosmas, C.U., Alechine, E.A. and Leslie, F.P. (2019), "Comparative study of the adsorption capacity of lead (II) ions onto bean husk and fish scale from aqueous solution", J. Water Reuse D., 9(3), 249-262. https://doi.org/10.2166/wrd.2019.061.
  14. Crini, G. and Badot, P.M. (2010), Sorption Processes and Pollution: Conventional and Non-Conventional Sorbents for Pollutant Removal From Wastewaters, Presses Universitaires de Franche-Comte, Besancon, France.
  15. El-Ashtoukhy, E.S.Z., Amin, N.K. and Abdelwahab, O. (2008), "Removal of lead (II) and copper (II) from aqueous solution using Pomegranate Peel as a new adsorbent", Desalination, 223(1-3), 162-173. https://doi.org/10.1016/j.desal.2007.01.206.
  16. Elboughdiri, N. (2020), "The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater", Cogent Eng., 7(1),1782623. https://doi.org/10.1080/23311916.2020.1782623.
  17. Elovich, S.Y. and Larionov, O.G. (1962), "Theory of adsorption from nonelectrolyte solutions on solid adsorbents", Russ. Chem. Bull., 11(2), 198-203. https://doi.org/10.1007/BF00908017.
  18. Freundlich, H. (1907), "u ber die adsorption in losungen", Zeitschrift fur Physikalische Chemie, 57(1), 385-470. https://doi.org/10.1515/zpch-1907-5723.
  19. Georgescu, A.M., Nardou, F., Zichil, V. and Nistor, I.D. (2018), "Adsorption of lead (II) ions from aqueous solutions onto Cr-pillared clays", Appl. Clay Sci., 152, 44-52. https://doi.org/10.1016/j.clay.2017.10.031.
  20. Ghibate, R., Senhaji, O. and Taouil, R. (2021), "Kinetic and thermodynamic approaches on rhodamine b adsorption onto pomegranate peel", Case Stud. Chem. Environ. Eng., 3, 1000782. https://doi.org/10.1016/j.cscee.2020.100078.
  21. Hameed, B.H. (2009), "Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue", J. Hazard. Mater., 162(2-3), 939-944. https://doi.org/10.1016/j.jhazmat.2008.05.120.
  22. Hana, J., Nohback, P. and Hyokwan, B. (2020) "Removal of Pb (II) from wastewater by biosorption using powdered waste sludge", Membr. Water Treat., 11(1), 41-48. https://doi.org/10.12989/mwt.2020.11.1.041.
  23. Hashemian. S. (2011), "Kinetic and thermodynamic of adsorption of methylene blue (MB) by CuFe2O4/rice bran composite", Int. J. Phys. Sci., 6(27), 6257-6267. https://doi.org/10.5897/IJPS11.187.
  24. Herawati, N., Suzuki, S., Hayashi, K., Rivai, I.F. and Koyoma, H. (2000), "Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type", B. Environ. Contam. Tox., 64(1),33-39. https://doi.org/10.1007/s001289910006.
  25. Hospodarova, V., Singovszka, E. and Stevulova, N. (2018), "Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials", Am. J. Anal. Chem., 9(6), 303-310. https://doi.org/10.4236/ajac.2018.96023.
  26. Ho, Y.S. and Mckay, G. (1999), "Pseudo-second order model for sorption processes", Proc. Biochem., 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5.
  27. Jeongmin, H., Seungwoo, L., Dongah, K., Eunmi, K. and Yuhoon, H. (2020), "Improved adsorption performance of heavy metals by surface modification of polypropylene/polyethylene media through oxygen plasma and acrylic acid", Membr. Water Treat, 11(3), 231-235. https://doi.org/10.12989/mwt.2020.11.3.231.
  28. Kanan, K. and Sundaram, M.M. (2001), "Kinetics and mechanism of removal methylene blue by adsorption on the various carbons-a comparative study", Dyes Pigments, 51(1), 25-40. https://doi.org/10.1016/S0143-7208(01)00056-0
  29. Karthikeyan, T., Rajgopal, S., and Miranda, L.R. (2005), "Chromium (VI) adsorption from aqueous solution by hevea brasilinesis sawdust activated carbon", J. Hazard Mater, 124(1-3), 92-199. https://doi.org/10.1016/j.jhazmat.2005.05.003.
  30. Kataria. N., Garg, V.K., Jain. M. and Kadirvelu. K. (2016), "Preparation, characterization and potential use of flower shaped Zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution", Adv. Powder Technol., 27(4), 1180-1188. https://doi.org/10.1016/j.apt.2016.04.001.
  31. Kazak, O., Tor, A., Akin, I. and Arslan, G. (2015), "Preparation of new polysulfone capsules containing Cyanex 272 and their properties for Co (II) removal from aqueous solution", J. Environ. Chem. Eng., 3(3), 1654-1661. https://doi.org/10.1016/j.jece.2015.06.007.
  32. Koswojo, R., Utomo, R.P., Ju, Y.H., Ayucitra, A., Soetaredjo, F.E., Sunarso, J. and Ismadji, S. (2010), "Acid green 25 removal from wastewater by organo-bentonite from pacitan", Appl. Clay Sci., 48(1-2), 81-86. https://doi.org/10.1016/j.clay.2009.11.023.
  33. Lagergren, S (1898), "Zur theorie der sogenannten adsorption geloster stoffe", Kungliga Svenska Vetenskapsakademiens Handlingar, 24(1), 1-39.
  34. Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica, and platinum", J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004.
  35. Maier, R.S. and Schure, M.R. (2018), "Transport properties and size exclusion effects in wide-pore superficially porous particles", Chem. Eng. Sci., 185, 243-255. https://doi.org/10.1016/j.ces.2018.03.041.
  36. Mckay, G., Otterburn, M.S. and Sweeney, A.G. (1980), "The removal of colour from effluent using various adsorbents-IV. Silica: Equilibria and column studies", Water Res., 14(1), 21-27. https://doi.org/10.1016/0043-1354(80)90038-X.
  37. Mekhalef Benhafsa, F., Kacha, S., Leboukh, A. and et Belaid, K.D (2018) "Etude comparative de l'adsorption du colorant Victoria Bleu Basique a partir de solutions aqueuses sur du carton usage et de la sciure de bois", J. Water Sci., 31(2), 109-126. https://doi.org/10.7202/1051695ar.
  38. Milenkovic, D.D., Milosavljevic, M.M., Marinkovic, A.D., Dokic, V.R., Mitrovic, J.Z. and Ljbojic, A.R (2013), "Removal of copper (II) ion from aqueous solution by high-porosity activated carbon", Water S.A, 39(4), 515-522. https://doi.org/10.4314/wsa.v39i4.10.
  39. Mohammadi, S.Z., Karimi, M.A., Afzali, D. and Mansouri, F. (2010), "Removal of Pb (II) from aqueous solutions using activated carbon from sea-buckthorn stones by chemical activation", Desalination, 262(1-3), 86-93. https://doi.org/10.1016/j.deset al.2010.05.048.
  40. Nejadshafiee, V. and Islami, M.R. (2019), "Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent", Mater. Sci. Eng. C, 101, 42-52. https://doi.org/10.1016/j.msec.2019.03.081.
  41. Obayomi, K.S., Bello, J.O., Nnoruka, J.S., Adediran. A.A and Olajide. P.O. (2019), "Development of low-cost bio-adsorbent from agricultural waste composite for Pb (II) and As (III) sorption from aqueous solution", Cogent Eng., 6(1), 1687274. https://doi.org/10.1080/23311916.2019.1687274.
  42. O zcan, A., O ncu, E.M. and O zcan, A.S. (2006), "Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite", Colloid Surfaces A., 277(1-3), 90-97. https://doi.org/10.1016/j.colsurfa.2005.11.017.
  43. Ponnusamy, S.K. and Subramaniam, R. (2013), "Process optimization studies of Congo red dye adsorption onto cashew nutshell using response surface methodology", Int. J. Ind. Chem., 4(1), 17. https://doi.org/10.1186/2228-5547-4-17.
  44. Rashed, M.N., Gad, A.A. and Abdeldaiem, A.M. (2018), "Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water", Adv. Environ. Res., 7(1), 53-71. https://doi.org/10.12989/aer.2018.7.1.053
  45. Redlich, O. and Peterson, D.L. (1959), "A useful adsorption isotherm", J. Phys. Chem., 63(6), 1024. https://doi.org/10.1021/j150576a611.
  46. Sepulvida. L.A. and Santana. C.C. (2013), "Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat", J. Environ. Tech., 34(8), 967-977. https://doi.org/10.1080/09593330.2012.724251.
  47. Shaban, M., Abukhadra, M.R., Parwaz, A.A. and Jabili, B.M. (2018), "Removal of Congo red, methylene blue and Cr (VI) ions from water using natural serpentine", J. Taiwan Inst. Chem. Eng., 82, 102-116. https://doi.org/10.1016/j.jtice.2017.10.023.
  48. Shirsath, D.S. and Shrivastava, V.S. (2012), "Removal of hazardous dye Ponceau-S by using chitin: An organic bioadsorbent", Afr. J. Environ. Sci. Technol., 6(2), 115-124. https://doi.org/10.5897/AJEST11.118.
  49. Simonin, J.P. (2016), "On the comparison of pseudo-first-order and pseudo-second-order rate laws in the modeling of adsorption kinetics", Chem. Eng. J., 300, 254-263. https://doi.org/10.1016/j.cej.2016.04.079.
  50. Sparks, D.L. (2003), Environmental Soil Chemistry, Elsevier, California, U.S.A.
  51. Sreejalekshmi, K.G., Krishnan, K.A. and Anirudhan, T.S. (2009), "Adsorption of Pb (II) and Pb (II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies", J. Hazard. Mater., 161(2-3), 1506-1513. https://doi.org/10.1016/j.jhazmat.2008.05.002.
  52. Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B. and Mishra, I.M. (2006), "Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics, and thermodynamics", Colloid Surface A., 272(1-2), 89-104. https://doi.org/10.1016/j.colsurfa.2005.07.016.
  53. Tran, H.N., You, S.J. and Chao, H.P. (2016), "Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study", J. Environ. Chem. Eng., 4(3), 2671-2682. https://doi.org/10.1016/j.jece.2016.05.009.
  54. Weber, Jr. W.J. and Morris, J.C. (1963), "Kinetics of adsorption on carbon from solution", J. Sanit. Eng. Div., 89(2), 31-59. https://doi.org/10.1061/JSEDAI.0000430
  55. Xia L., Huang, Z., Zhong, L., Xie, F., Tang, C. and Tsui, C. (2018), "Bagasse cellulose grafted with an amino-terminated hyperbranched polymer for the removal of Cr (VI) from aqueous solution", J. Polym., 10(8), 931. https://doi.org/10.3390/polym10080931.