DOI QR코드

DOI QR Code

Effect of membrane deformation on performance of vacuum assisted air gap membrane distillation (V-AGMD)

  • Kim, Yusik (School of Civil and Environmental Engineering, Kookmin University) ;
  • Choi, Jihyeok (School of Civil and Environmental Engineering, Kookmin University) ;
  • Choi, Yongjun (School of Civil and Environmental Engineering, Kookmin University) ;
  • Lee, Sangho (School of Civil and Environmental Engineering, Kookmin University)
  • Received : 2021.06.20
  • Accepted : 2021.09.28
  • Published : 2022.01.25

Abstract

Vacuum-assisted air gap membrane distillation (V-AGMD) has the potential to achieve higher flux and productivity than conventional air gap membrane distillation (AGMD). Nevertheless, there is not much information on technical aspects of V-AGMD operation. Accordingly, this study aims to analyze the effect of membrane deformation on flux in V-AGMD operation. Experiments were carried out using a bench-scale V-AGMD system. Statistical models were applied to understand the flux behaviors. Statistical models based on MLR, GNN, and MLFNN techniques were developed to describe the experimental data. Results showed that the flux increased by up to 4 times with the application of vacuum in V-AGMD compared with conventional AGMD. The flux in both AGMD and V-AGMD is affected by the difference between the air gap pressure and the saturation pressure of water vapor, but their dependences were different. In V-AGMD, the membranes were found to be deformed due to the vacuum pressure because they were not fully supported by the spacer. As a result, the deformation reduced the effective air gap width. Nevertheless, the rejection and LEP were not changed even if the deformation occurred. The flux behaviors in V-AGMD were successfully interpreted by the GNN and MLFNN models. According to the model calculations, the relative impact of the membrane deformation ranges from 10.3% to 16.1%.

Keywords

Acknowledgement

This study was supported by the National Research of Korea (NRF-2021R1A2C1013611).

References

  1. Abu-Zeid, M.A.E.R., Zhang, L., Jin, W.Y., Feng, T., Wu, Y. and Chen, H. L. (2016), "Improving the performance of the air gap membrane distillation process by using a supplementary vacuum pump", Desalination, 384, 31-42. https://doi.org/10.1016/j.desal.2016.01.020.
  2. Ahmed, F.E., Hashaikeh, R. and Hilal, N. (2020), "Hybrid technologies, The future of energy efficient desalination - A review", Desalination, 495, 114659. https://doi.org/10.1016/j.desal.2020.114659.
  3. Ali, A., Tufa, R.A., Macedonio, F., Curcio, E. and Drioli, E. (2018), "Membrane technology in renewable-energy-driven desalination", Renew. Sust. Energ. Rev., 81, 1-21. https://doi.org/10.1016/j.rser.2017.07.047.
  4. Alkhudhiri, A., Darwish, N. and Hilal, N. (2012), "Membrane distillation, A comprehensive review", Desalination, 287, 2-18. https://doi.org/10.1016/j.desal.2011.08.027.
  5. Alsaadi, A.S., Francis, L., Maab, H., Amy, G.L. and Ghaffour, N. (2015), "Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies", J. Membr. Sci., 489, 73-80. https://doi.org/10.1016/j.memsci.2015.04.008.
  6. Alsebaeai, M.K. and Ahmad, A.L. (2020), "Membrane distillation, Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance", J. Ind. Eng. Chem., 86, 13-34. https://doi.org/10.1016/j.jiec.2020.03.006.
  7. Altaee, A., Zaragoza, G. and van Tonningen, H.R. (2014), "Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination", Desalination, 336(1), 50-57. https://doi.org/10.1016/j.desal.2014.01.002.
  8. Andres-Manas, J.A., Ruiz-Aguirre, A., Acien, F.G. and Zaragoza, G. (2020), "Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration", Desalination, 475, 114202. https://doi.org/10.1016/j.desal.2019.114202.
  9. Ashoor, B.B., Mansour, S., Giwa, A., Dufour, V. and Hasan, S.W. (2016), "Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review", Desalination, 398, 222-246. https://doi.org/10.1016/j.desal.2016.07.043.
  10. Atab, M.S., Smallbone, A.J. and Roskilly, A.P. (2016), "An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation", Desalination, 397, 174-184. https://doi.org/10.1016/j.desal.2016.06.020.
  11. Aziz, N.I.H.A. and Hanafiah, M.M. (2021), "Application of life cycle assessment for desalination: Progress, challenges and future directions", Environ. Pollut., 268, 115948. https://doi.org/10.1016/j.envpol.2020.115948.
  12. Bagheri, M., Akbari, A. and Mirbagheri, S.A. (2019), "Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques, A critical review", Proc. Safe. Environ. Protect., 123, 229-252. https://doi.org/10.1016/j.psep.2019.01.013.
  13. Barragan, V.M. and Pastuschuk, E. (2014), "Viscoelastic deformation of sulfonated polymeric cation-exchange membranes exposed to a pressure gradient", Mater. Chem. Phys., 146(1), 65-72. https://doi.org/10.1016/j.matchemphys.2014.02.043.
  14. Bhagat, S.K., Tung, T.M. and Yaseen, Z.M. (2020), "Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research", J. Clean. Prod., 250, 119473. https://doi.org/10.1016/j.jclepro.2019.119473.
  15. Blandin, G., Vervoort, H., D'Haese, A., Schoutteten, K., Bussche, J.V., Vanhaecke, L., Myat, D.T., Le-Clech, P. and Verliefde, A.R.D. (2016), "Impact of hydraulic pressure on membrane deformation and trace organic contaminants rejection in pressure assisted osmosis (PAO)", Proc. Safe. Environ. Protect., 102, 316-327. https://doi.org/10.1016/j.psep.2016.04.004.
  16. Caldera, U. and Breyer, C. (2020), "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems", Energy, 200, 117507. https://doi.org/10.1016/j.energy.2020.117507.
  17. Cerneaux, S., Struzynska, I., Kujawski, W.M., Persin, M. and Larbot, A. (2009), "Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes", J. Membr. Sci., 337(1), 55-60. https://doi.org/10.1016/j.memsci.2009.03.025.
  18. Choi, Y., Lee, Y., Shin, K., Park, Y. and Lee, S. (2020), "Analysis of long-term performance of full-scale reverse osmosis desalination plant using artificial neural network and tree model", Environ. Eng. Res., 25(5), 763-770. https://doi.org/10.4491/eer.2019.324.
  19. Damtie, M.M. and Choi, J.S. (2017), "Modeling and application of direct contact membrane distillation for fluoride removal from aqueous solutions", Desalin. Water Treat., 97, 23-40. https://doi.org/10.5004/dwt.2017.21690.
  20. Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P. and Edmonds, J. (2021), "Evaluating the economic impact of water scarcity in a changing world", Nature Commun., 12(1), 1915. https://doi.org/10.1038/s41467-021-22194-0.
  21. Drioli, E., Ali, A. and Macedonio, F. (2015), "Membrane distillation, Recent developments and perspectives", Desalination, 356, 56-84. https://doi.org/10.1016/j.desal.2014.10.028.
  22. Ebrahimzadeh, S., Wols, B., Azzellino, A., Martijn, B.J. and van der Hoek, J.P. (2021), "Quantification and modelling of organic micropollutant removal by reverse osmosis (RO) drinking water treatment", J. Water Proc. Eng., 42, 102164. https://doi.org/10.1016/j.jwpe.2021.102164.
  23. El-Dessouky, H.T. and Ettouney, H.M. (2002), Fundamentals of seawater desalination, Elsevier.
  24. Goh, P.S., Lau, W.J., Othman, M.H.D. and Ismail, A.F. (2018), "Membrane fouling in desalination and its mitigation strategies", Desalination, 425, 130-155. https://doi.org/10.1016/j.desal.2017.10.018.
  25. Gonzalez, D., Amigo, J. and Suarez, F. (2017), "Membrane distillation, Perspectives for sustainable and improved desalination", Renew. Sust. Energ. Rev., 80, 238-259. https://doi.org/10.1016/j.rser.2017.05.078.
  26. Gostoli, C., Sarti, G.C. and Matulli, S. (1987), "Low temperature distillation through hydrophobic membranes", Sep. Sci. Technol., 22(2-3), 855-872. https://doi.org/10.1080/01496398708068986.
  27. Guijt, C.M., Meindersma, G.W., Reith, T. and De Haan, A.B. (2005), "Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis", Sep. Purif. Technol., 43(3), 245-255. https://doi.org/10.1016/j.seppur.2004.09.016.
  28. Hamdan, H., Saidy, M., Alameddine, I. and Al-Hindi, M. (2021), "The feasibility of solar-powered small-scale brackish water desalination units in a coastal aquifer prone to saltwater intrusion: A comparison between electrodialysis reversal and reverse osmosis", J. Environ. Manage., 290, 112604. https://doi.org/10.1016/j.jenvman.2021.112604.
  29. Ihsanullah, I., Atieh, M.A., Sajid, M. and Nazal, M.K. (2021), "Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies", Sci. Total Environ., 780, 146585. https://doi.org/10.1016/j.scitotenv.2021.146585.
  30. Im, B.G., Lee, J.G., Kim, Y.D. and Kim, W.S. (2018), "Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane", J. Membr. Sci., 565, 14-24. https://doi.org/10.1016/j.memsci.2018.08.006.
  31. Janajreh, I., El Kadi, K., Hashaikeh, R. and Ahmed, R. (2017), "Numerical investigation of air gap membrane distillation (AGMD), Seeking optimal performance", Desalination, 424, 122-130. https://doi.org/10.1016/j.desal.2017.10.001.
  32. Janajreh, I., Hashaikeh, R. and Hussain, M.N. (2017), "Evaluation of thermal efficiency of membrane distillation under conductive layer integration", Energy Procedia, 105, 4935-4942. https://doi.org/10.1016/j.egypro.2017.03.985.
  33. Jiang, X., Shao, Y., Sheng, L., Li, P. and He, G. (2021), "Membrane crystallization for process intensification and control: A review", Engineering, 7(1), 50-62. https://doi.org/10.1016/j.eng.2020.06.024.
  34. Kim, J., Park, K., Yang, D.R. and Hong, S. (2019), "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants", Appl. Energ., 254, 113652. https://doi.org/10.1016/j.apenergy.2019.113652.
  35. Kim, Y., Choi, Y., Choi, J. and Lee, S. (2021), "Powdered activated carbon (PAC) - vacuum-assisted air gap membrane distillation (V-AGMD) hybrid system to treat wastewater containing surfactants, Effect of operating conditions", Environ. Eng. Res., 26(5), 200377-200370. https://doi.org/10.4491/eer.2020.377..
  36. Kundzewicz, Z.W., Krysanova, V., Benestad, R.E., Hov, O ., Piniewski, M. and Otto, I.M. (2018), "Uncertainty in climate change impacts on water resources", Environ. Sci. Policy, 79, 1-8. https://doi.org/10.1016/j.envsci.2017.10.008.
  37. Leaper, S., Abdel-Karim, A., Gad-Allah, T.A. and Gorgojo, P. (2019), "Air-gap membrane distillation as a one-step process for textile wastewater treatment", Chem. Eng. J., 360, 1330-1340. https://doi.org/10.1016/j.cej.2018.10.209.
  38. Lee, S., Choi, J., Park, Y.G., Shon, H., Ahn, C.H. and Kim, S.H. (2019), "Hybrid desalination processes for beneficial use of reverse osmosis brine: Current status and future prospects", Desalination, 454, 104-111. https://doi.org/10.1016/j.desal.2018.02.002.
  39. Lee, C., Jang, J., Tin, N.T., Kim, S., Tang, C.Y. and Kim, I.S. (2020), "Effect of spacer configuration on the characteristics of FO membranes: Alteration of permeation characteristics by membrane deformation and concentration polarization", Environ. Sci. Technol., 54(10), 6385-6395. https://doi.org/10.1021/acs.est.9b06921.
  40. Missimer, T.M. and Maliva, R.G. (2018), "Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls", Desalination, 434, 198-215. https://doi.org/10.1016/j.desal.2017.07.012.
  41. Niwa, T. (2003), "Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures", J. Chem. Inform. Comput. Sci., 43(1), 113-119. https://doi.org/10.1021/ci020013r.
  42. Noor, I.E., Martin, A. and Dahl, O. (2020), "Process design of industrial-scale membrane distillation system for wastewater treatment in nano-electronics fabrication facilities", MethodsX, 7, 101066. https://doi.org/10.1016/j.mex.2020.101066.
  43. Peters, C.D. and Hankins, N.P. (2021), "Making zero-liquid discharge desalination greener: Utilising low-grade heat and vacuum membrane distillation for the regeneration of volatile draw solutes", Desalination, 507, 115034. https://doi.org/10.1016/j.desal.2021.115034.
  44. Pinto, F.S. and Marques, R.C. (2017), "Desalination projects economic feasibility: A standardization of cost determinants", Renew. Sust. Energ. Rev., 78, 904-915. https://doi.org/10.1016/j.rser.2017.05.024.
  45. Pistocchi, A., Bleninger, T., Breyer, C., Caldera, U., Dorati, C., Ganora, D., Millan, M.M., Paton, C., Poullis, D., Herrero, F.S., Sapiano, M., Semiat, R., Sommariva, C., Yuece, S. and Zaragoza, G. (2020), "Can seawater desalination be a win-win fix to our water cycle?", Water Res., 182, 115906. https://doi.org/10.1016/j.watres.2020.115906.
  46. Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A. and Hilal, N. (2019), "Reverse osmosis desalination, A state-of-the-art review", Desalination 459, 59-104. https://doi.org/10.1016/j.desal.2019.02.008.
  47. Roman, N.D., Bre, F., Fachinotti, V.D. and Lamberts, R. (2020), "Application and characterization of metamodels based on artificial neural networks for building performance simulation, A systematic review", Energ. Buildings, 217, 109972. https://doi.org/10.1016/j.enbuild.2020.109972.
  48. Ruiz Salmon, I. and Luis, P. (2018), "Membrane crystallization via membrane distillation", Chem. Eng. Process, 123, 258-271. https://doi.org/10.1016/j.cep.2017.11.017.
  49. Saadon, A., Abdullah, J., Muhammad, N.S., Ariffin, J. and Julien, P.Y. (2021), "Predictive models for the estimation of riverbank erosion rates", Catena, 196, 104917. https://doi.org/10.1016/j.catena.2020.104917.
  50. She, Q., Hou, D., Liu, J., Tan, K.H. and Tang, C.Y. (2013), "Effect of feed spacer induced membrane deformation on the performance of pressure retarded osmosis (PRO): Implications for PRO process operation", J. Membr. Sci., 445, 170-182. https://doi.org/10.1016/j.memsci.2013.05.061.
  51. Skuse, C., Gallego-Schmid, A., Azapagic, A. and Gorgojo, P. (2021), "Can emerging membrane-based desalination technologies replace reverse osmosis?", Desalination, 500, 114844. https://doi.org/10.1016/j.desal.2020.114844.
  52. Thomas, N., Mavukkandy, M.O., Loutatidou, S. and Arafat, H.A. (2017), "Membrane distillation research & implementation, Lessons from the past five decades", Sep. Purif. Technol., 189, 108-127. https://doi.org/10.1016/j.seppur.2017.07.069.
  53. Tijing, L.D., Woo, Y.C., Choi, J.S., Lee, S., Kim, S.H. and Shon, H.K. (2015), "Fouling and its control in membrane distillation-A review", J. Membr. Sci., 475, 215-244. https://doi.org/10.1016/j.memsci.2014.09.042.
  54. Ullah, R., Khraisheh, M., Esteves, R.J., McLeskey Jr, J.T., AlGhouti, M., Gad-el-Hak, M. and Tafreshi, H.V. (2018), "Energy efficiency of direct contact membrane distillation", Desalination, 433, 56-67. https://doi.org/10.1016/j.desal.2018.01.025.
  55. Usman, H.S., Touati, K. and Rahaman, M.S. (2021), "An economic evaluation of renewable energy-powered membrane distillation for desalination of brackish water", Renew. Energ., 169, 1294-1304. https://doi.org/10.1016/j.renene.2021.01.087.
  56. Yang, C., Peng, X., Zhao, Y., Wang, X., Cheng, L., Wang, F., Li, Y. and Li, P. (2019), "Experimental study on VMD and its performance comparison with AGMD for treating copper-containing solution", Chem. Eng. Sci., 207, 876-891. https://doi.org/10.1016/j.ces.2019.07.013.
  57. Yuan, Z., Wei, L., Afroze, J. D., Goh, K., Chen, Y., Yu, Y., She, Q. and Chen, Y. (2019), "Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation", J. Membr. Sci., 579, 90-101. https://doi.org/10.1016/j.memsci.2019.02.045.
  58. Zhao, S., Liao, Z., Fane, A., Li, J., Tang, C., Zheng, C., Lin, J. and Kong, L. (2021), "Engineering antifouling reverse osmosis membranes: A review", Desalination, 499, 114857. https://doi.org/10.1016/j.desal.2020.114857.