DOI QR코드

DOI QR Code

Quantitative real-time PCR assays for the concurrent diagnosis of infectious laryngotracheitis virus, Newcastle disease virus and avian metapneumovirus in poultry

  • Mo, Jongseo (Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia) ;
  • Angelichio, Michael (IDEXX Laboratories, Inc.) ;
  • Gow, Lisa (IDEXX Laboratories, Inc.) ;
  • Leathers, Valerie (IDEXX Laboratories, Inc.) ;
  • Jackwood, Mark W. (Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia)
  • Received : 2021.05.25
  • Accepted : 2021.12.12
  • Published : 2022.03.31

Abstract

Newcastle disease (ND), infectious laryngotracheitis (ILT) and avian metapneumovirus (aMPV) can be similar making it critical to quickly differentiate them. Herein, we adapted pre-existing molecular-based diagnostic assays for NDV and ILTV, and developed new assays for aMPV A and B, for use under synchronized thermocycling conditions. All assays performed equivalently with linearity over a 5 log10 dynamic range, a reproducible (R2 > 0.99) limit of detection of ≥ 10 target copies, and amplification efficiencies between 86.8%-98.2%. Using biological specimens for NDV and ILTV showed 100% specificity. Identical amplification conditions will simplify procedures for detection in diagnostic laboratories.

Keywords

Acknowledgement

This research was funded in part by the Veterinary Medical Experiment Station, UGA and by IDEXX Laboratories, Inc. (1021RR188-296).

References

  1. Villegas P. Viral diseases of the respiratory system. Poult Sci. 1998;77(8):1143-1145. https://doi.org/10.1093/ps/77.8.1143
  2. Bagust TJ, Jones RC, Guy JS. Avian infectious laryngotracheitis. Rev Sci Tech. 2000;19(2):483-492. https://doi.org/10.20506/rst.19.2.1229
  3. Dimitrov KM, Abolnik C, Afonso CL, Albina E, Bahl J, Berg M, et al. Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect Genet Evol. 2019;74:103917. https://doi.org/10.1016/j.meegid.2019.103917
  4. Dimitrov KM, Ramey AM, Qiu X, Bahl J, Afonso CL. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus). Infect Genet Evol. 2016;39:22-34. https://doi.org/10.1016/j.meegid.2016.01.008
  5. Kaleta EF, Baldauf C. Newcastle disease in free-living and pet birds. In: Alexander DJ, editor. Newcastle Disease. Boston: Springer; 1988, 197-246.
  6. Alexander DJ. Avian Paramyxoviridae--recent developments. Vet Microbiol. 1990;23(1-4):103-114. https://doi.org/10.1016/0378-1135(90)90140-Q
  7. Shin HJ, Njenga MK, McComb B, Halvorson DA, Nagaraja KV. Avian pneumovirus (APV) RNA from wild and sentinel birds in the United States has genetic homology with RNA from APV isolates from domestic turkeys. J Clin Microbiol. 2000;38(11):4282-4284. https://doi.org/10.1128/JCM.38.11.4282-4284.2000
  8. Naylor C, Shaw K, Britton P, Cavanagh D. Appearance of type B avian Pneumovirus in great Britain. Avian Pathol. 1997;26(2):327-338. https://doi.org/10.1080/03079459708419215
  9. Van de Zande S, Nauwynck H, Cavanagh D, Pensaert M. Infections and reinfections with avian pneumovirus subtype A and B on Belgian turkey farms and relation to respiratory problems. Zentralbl Veterinarmed B. 1998;45(10):621-626.
  10. Mo J, Angelichio M, Gow L, Leathers V, Jackwood MW. Validation of specific quantitative real-time RTPCR assay panel for infectious bronchitis using synthetic DNA standards and clinical specimens. J Virol Methods. 2020;276:113773. https://doi.org/10.1016/j.jviromet.2019.113773
  11. Callison SA, Riblet SM, Oldoni I, Sun S, Zavala G, Williams S, et al. Development and validation of a real-time Taqman PCR assay for the detection and quantitation of infectious laryngotracheitis virus in poultry. J Virol Methods. 2007;139(1):31-38. https://doi.org/10.1016/j.jviromet.2006.09.001
  12. Kim LM, Suarez DL, Afonso CL. Detection of a broad range of class I and II Newcastle disease viruses using a multiplex real-time reverse transcription polymerase chain reaction assay. J Vet Diagn Invest. 2008;20(4):414-425. https://doi.org/10.1177/104063870802000402
  13. Moriya Y, Nakamura T, Okamura N, Sakaeda T, Horinouchi M, Tamura T, et al. Comparison of synthetic DNA templates with authentic cDNA templates in terms of quantification by real-time quantitative reverse transcription polymerase chain reaction. Biol Pharm Bull. 2006;29(3):535-538. https://doi.org/10.1248/bpb.29.535
  14. Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol. 2004;42(5):1863-1868. https://doi.org/10.1128/JCM.42.5.1863-1868.2004
  15. Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. FastPCR: an in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 2017;109(3-4):312-319. https://doi.org/10.1016/j.ygeno.2017.05.005
  16. Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M. How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif. 2015;3:9-16. https://doi.org/10.1016/j.bdq.2015.01.005