참고문헌
- Sasano Y, Nagasawa K, Kaboli S, Sugiyama M, Harashima S. 2016. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci. Rep. 6: 30278.
- Mitsui R, Yamada R, Ogino H. 2019. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. World J. Microbiol. Biotechnol. 35: 111.
- Hao H, Wang X, Jia H, Yu M, Zhang X, Tang H, Zhang L. 2016. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae. Anal. Biochem. 509: 118-123. https://doi.org/10.1016/j.ab.2016.07.008
- Hassan N, Easmin F, Sasano Y, Ekino K, Taguchi H, Harashima S. 2020. Systematic approach for assessing whether undeletable chromosomal regions in Saccharomyces cerevisiae are required for cell viability. AMB Express. 10: 73.
- Lee YG, Jin YS, Cha YL, Seo JH. 2017. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresour. Technol. 228: 355-361. https://doi.org/10.1016/j.biortech.2016.12.042
- Kim YH, Sugiyama M, Yamagishi K, Kaneko Y, Fukui K, Kobayashi A, et al. 2005. A versatile and general splitting technology for generating targeted YAC subclones. Appl. Microbiol. Biotechnol. 69: 65-70. https://doi.org/10.1007/s00253-005-1970-x
- Sugiyama M, Ikushima S, Nakazawa T, Kaneko Y, Harashima S. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. BioTechniques 38: 909-914. https://doi.org/10.2144/05386RR01
- Kim YH, Nam SW. 2010. Development of simultaneous YAC manipulation-amplification (SYMA) system by chromosome splitting technique harboring copy number amplification system. J. Life Sci. 20: 789-793. https://doi.org/10.5352/JLS.2010.20.5.789
- Kim YH, Ishikawa D, Ha PH, Sugiyama M, Kaneko Y, Harashima S. 2006. Chromosome XII context is important for rDNA function in yeast. Nucleic Acids Res. 34: 2914-2924. https://doi.org/10.1093/nar/gkl293
- Park AH, Sugiyama M, Harashima S, Kim YH. 2012. Creation of an ethanol-tolerant yeast strain by genome reconstruction based on chromosome splitting technology. J. Microbiol. Biotechnol. 22: 184-189. https://doi.org/10.4014/jmb.1109.09046
- Kim MJ, Kim BH, Nam SW, Choi ES, Shin DH, Cho HY, et al. 2013. Efficient secretory expression of recombinant endoxylanase from Bacillus sp. HY-20 in Saccharomyces cerevisiae. J. Life Sci. 23: 863-868. https://doi.org/10.5352/JLS.2013.23.7.863
- Chun YC, Jung KH, Lee JC, Park SH, Chung HK, Yoon KH. 1998. Molecular cloning and the nucleotide sequence of a Bacillus sp. KK-1 β-xylosidase gene. J. Microbiol. Biotechnol. 8: 28-33.
- Kim SR, Kwee NR, Kim B, Jin YS. 2013. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulose kinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res. 13: 312-321. https://doi.org/10.1111/1567-1364.12036
- Lee JS, Hong SK, Lee CR, Nam SW, Jeon SJ, Kim YH. 2019. Production of ethanol (agaro-bioethanol) from agarose by unified enzymatic saccharification and fermentation in recombinant yeast. J. Microbiol. Biotechnol. 29: 625-632. https://doi.org/10.4014/jmb.1902.02012
- Jung HM, Kim YH. 2019. Comparison of methods for stable simultaneous expression of various heterologous genes in Saccharomyces cerevisiae. Microbiol. Biotechnol. Lett. 47: 667-672. https://doi.org/10.4014/mbl.1907.07004