DOI QR코드

DOI QR Code

Xylan 대사유전자를가진미니효모인공염색체의가공및 Mitotic Stability 분석

Manipulation of Mini-Yeast Artificial Chromosome Containing Xylan Metabolism Related Genes and Mitotic Stability Analysis in Yeast

  • 강다인 (동의대학교 바이오응용공학부 의생명공학전공) ;
  • 김연희 (동의대학교 바이오응용공학부 의생명공학전공)
  • Da-In, Kang (Biomedical Engineering and Biotechnology Major, Divison of Applied Bioengineering, Dong-Eui University) ;
  • Yeon-Hee, Kim (Biomedical Engineering and Biotechnology Major, Divison of Applied Bioengineering, Dong-Eui University)
  • 투고 : 2022.07.15
  • 심사 : 2022.08.17
  • 발행 : 2022.09.28

초록

본 연구에서는 염색체가공기술을 이용하여 xylan으로부터 다양한 대사산물을 생산할 수 있는 유전자를 도입한 효모인 공염색체를 구축하였다. 효율적인 염색체가공기술인 PCS법을 이용하기 위해 염색체 splitting에 필요한 splitting fragment (DNA module)를 각각 제작하였고, xylan 대사에 관여하는 유전자군을 가진 YKY164 균주에 형질전환하였다. 두번의 염색체 splitting에 의해 1,124 kb의 효모 7번염색체는 887 kb-YAC, 45 kb-mini YAC와 198 kb-YAC로 가공되었으며, 총 18개의 염색체를 가진 YKY183 균주를 구축하였다. 염색체가공을 위한 splitting efficiency는 50-78%였으며, 45 kb-mini YAC 상에 있는 외래유전자의 발현 및 효소활성은 염색체가공 전과 비교하여 유의미한 변화 및 저하는 관찰되지 않았다. 또한 생산된 재조합효소에 의한 xylan의 분해산물을 확인하였으며, 160 generation 동안 미니 효모인 공염색체는 염색체의 결실없이 안정적인 mitotic stability를 유지하였다.

In this study, yeast artificial chromosome Insert (YAC) harboring genes which related xylan metabolism was constructed by using chromosome manipulation technique. For efficient chromosome manipulation, each splitting fragment (DNA module) required for splitting process was prepared and these DNA modules were transformed into Saccharomyces cerevisiae strain YKY164. By two-rounds chromosome splitting, yeast chromosome VII (1,124 kb) was split 887 kb-YAC, 45 kb-mini YAC and 198 kb-YAC and YKY183 strain containing 18 chromosomes was constructed. Splitting efficiency for chromosome manipulation was 50- 78% and expression level of foreign genes on 45 kb-mini YAC and enzyme activity were indistinguishable from that of the YKY164 strain. Furthermore, xylan-degraded products by recombinant enzymes were confirmed and mini-yeast artificial chromosome maintained stable mitotic stability without chromosome loss during 160 generations.

키워드

참고문헌

  1. Sasano Y, Nagasawa K, Kaboli S, Sugiyama M, Harashima S. 2016. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci. Rep. 6: 30278.
  2. Mitsui R, Yamada R, Ogino H. 2019. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. World J. Microbiol. Biotechnol. 35: 111.
  3. Hao H, Wang X, Jia H, Yu M, Zhang X, Tang H, Zhang L. 2016. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae. Anal. Biochem. 509: 118-123. https://doi.org/10.1016/j.ab.2016.07.008
  4. Hassan N, Easmin F, Sasano Y, Ekino K, Taguchi H, Harashima S. 2020. Systematic approach for assessing whether undeletable chromosomal regions in Saccharomyces cerevisiae are required for cell viability. AMB Express. 10: 73.
  5. Lee YG, Jin YS, Cha YL, Seo JH. 2017. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresour. Technol. 228: 355-361. https://doi.org/10.1016/j.biortech.2016.12.042
  6. Kim YH, Sugiyama M, Yamagishi K, Kaneko Y, Fukui K, Kobayashi A, et al. 2005. A versatile and general splitting technology for generating targeted YAC subclones. Appl. Microbiol. Biotechnol. 69: 65-70. https://doi.org/10.1007/s00253-005-1970-x
  7. Sugiyama M, Ikushima S, Nakazawa T, Kaneko Y, Harashima S. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. BioTechniques 38: 909-914. https://doi.org/10.2144/05386RR01
  8. Kim YH, Nam SW. 2010. Development of simultaneous YAC manipulation-amplification (SYMA) system by chromosome splitting technique harboring copy number amplification system. J. Life Sci. 20: 789-793. https://doi.org/10.5352/JLS.2010.20.5.789
  9. Kim YH, Ishikawa D, Ha PH, Sugiyama M, Kaneko Y, Harashima S. 2006. Chromosome XII context is important for rDNA function in yeast. Nucleic Acids Res. 34: 2914-2924. https://doi.org/10.1093/nar/gkl293
  10. Park AH, Sugiyama M, Harashima S, Kim YH. 2012. Creation of an ethanol-tolerant yeast strain by genome reconstruction based on chromosome splitting technology. J. Microbiol. Biotechnol. 22: 184-189. https://doi.org/10.4014/jmb.1109.09046
  11. Kim MJ, Kim BH, Nam SW, Choi ES, Shin DH, Cho HY, et al. 2013. Efficient secretory expression of recombinant endoxylanase from Bacillus sp. HY-20 in Saccharomyces cerevisiae. J. Life Sci. 23: 863-868. https://doi.org/10.5352/JLS.2013.23.7.863
  12. Chun YC, Jung KH, Lee JC, Park SH, Chung HK, Yoon KH. 1998. Molecular cloning and the nucleotide sequence of a Bacillus sp. KK-1 β-xylosidase gene. J. Microbiol. Biotechnol. 8: 28-33.
  13. Kim SR, Kwee NR, Kim B, Jin YS. 2013. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulose kinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res. 13: 312-321. https://doi.org/10.1111/1567-1364.12036
  14. Lee JS, Hong SK, Lee CR, Nam SW, Jeon SJ, Kim YH. 2019. Production of ethanol (agaro-bioethanol) from agarose by unified enzymatic saccharification and fermentation in recombinant yeast. J. Microbiol. Biotechnol. 29: 625-632. https://doi.org/10.4014/jmb.1902.02012
  15. Jung HM, Kim YH. 2019. Comparison of methods for stable simultaneous expression of various heterologous genes in Saccharomyces cerevisiae. Microbiol. Biotechnol. Lett. 47: 667-672. https://doi.org/10.4014/mbl.1907.07004