Acknowledgement
This research was supported by DIPA project and by Research scheme, National Research and Innovation Agency (BRIN).
References
- Kaczorowski L, Powierska-Czarny J, Wolko L, Piotrowska-Cyplik A, Cyplik P, Czarny J. 2022. The influence of bacteria causing subclinical mastitis on the structure of the cow's milk microbiome. Molecules 27: 1829.
- Duse A, Persson-Waller K, Pedersen K. 2021. Microbial aetiology, antibiotic susceptibility and pathogen-specific risk factors for udder pathogens from clinical mastitis in dairy cows. Animals 11: 2113.
- Pereira UP, Oliveira DGS, Mesquita LR, Costa GM, Pereira LJ. 2011. Efficacy of Staphylococcus aureus vaccines for bovine mastitis: A systematic review. Vet. Microbiol. 148: 117-124. https://doi.org/10.1016/j.vetmic.2010.10.003
- Hossain M. 2017. Bovine mastitis and its therapeutic strategy doing antibiotic sensitivity test. Austin J. Vet. Sci. Anim. Husb. 4: id1030.
- Raza A, Muhammad G, Sharif S, Atta A. 2013. Biofilm producing Staphylococcus aureus and bovine mastitis: A review. Mol. Microbiol. Res. 3: 1-8.
- Cheng WN, Han SG. 2020. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. Asian-Austral-Asian J. Anim. Sci. 33: 1699-1713. https://doi.org/10.5713/ajas.20.0156
- Yang Y, Liu Y, Ding Y, Yi L, Ma Z, Fan H, et al. 2013. Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in Eastern China. PLoS One 8: e67755.
- Arpini C, Cardoso P, Paiva M, da Costa Custodio D, da Costa G. 2016. Virulence genes of the Streptococcus agalactiae associated with bovine mastitis in Minas Gerais Livestock Herds, Brazil. Appl. Microbiol. 2: 1000119.
- Botelho ACN, Ferreira AFM, Fracalanzza SEL, Teixeira LM, Pinto TCA. 2018. A perspective on the potential zoonotic role of Streptococcus agalactiae: Searching for a missing link in alternative transmission routes. Front. Microbiol. 9: 608.
- Hernandez L, Bottini E, Cadona J, Cacciato C, Monteavaro C, Bustamante A, et al. 2021. Multidrug resistance and molecular characterization of Streptococcus agalactiae isolates from dairy cattle with mastitis. Front. Cell. Infect. Microbiol. 11: 647324.
- Jorgensen HJ, Nordstoga AB, Sviland S, Zadoks RN, Solverod L, Kvitle B, et al. 2016. Streptococcus agalactiae in the environment of bovine dairy herds - rewriting the textbooks? Vet. Microbiol. 184: 64-72. https://doi.org/10.1016/j.vetmic.2015.12.014
- Gunther J, Esch K, Poschadel N, Petzl W, Zerbe H, Mitterhuemer S, et al. 2011. Comparative kinetics of Escherichia coli and Staphylococcus aureus specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL1A or tumor necrosis factor alpha. Infect. Immun. 79: 695-707. https://doi.org/10.1128/IAI.01071-10
- Gie J, Drastini Y. 2016. Escherichia coli O157:H7 in milk of cows and the farm environment. Indones. J. Vet. Sci. 9: 174-177.
- Jenkins C, Rentenaar R, Landraud L, Brisse S. 2017. Enterobacteriaceae. Clin. Microbiol. Bact. pp. 1565-1578.
- Dogan B, Klaessig S, Rishniw M, Almeida RA, Oliver SP, Simpson K, et al. 2006. Adherent and invasive Escherichia coli are associated with persistent bovine mastitis. Vet. Microbiol. 116: 270-282. https://doi.org/10.1016/j.vetmic.2006.04.023
- Fahim KM, Ismael E, Khalefa HS, Farag HS, Hamza DA. 2019. Isolation and characterization of E. coli strains causing intramammary infections from dairy animals and wild birds. Int. J. Vet. Sci. Med. 7: 61-70. https://doi.org/10.1080/23144599.2019.1691378
- Suojala L, Kaartinen L, Pyorala S. 2013. Treatment for bovine Escherichia coli mastitis - an evidence-based approach. J. Vet. Pharmacol. Ther. 36: 521-531. https://doi.org/10.1111/jvp.12057
- Hunt K, Drummond N, Murphy M, Butler F, Buckley J, Jordan K. 2012. A case of bovine raw milk contamination with Listeria monocytogenes. Ir. Vet. J. 65: 18-20. https://doi.org/10.1186/2046-0481-65-18
- Sarkar S. 2015. Microbiological considerations: Pasteurized milk. Int. J. Dairy Sci. 10: 206-218. https://doi.org/10.3923/ijds.2015.206.218
- Rodriguez C, Taminiau B, Garcia-Fuentes E, Daube G, Korsak N. 2021. Listeria monocytogenes dissemination in farming and primary production: Sources, shedding and control measures. Food Control 120: 107540.
- Skowron K, Sekowska A, Kaczmarek A, Grudlewska K, Budzynska A, Bialucha A, et al. 2019. Comparison of the effectiveness of dipping agents on bacteria causing mastitis in cattle. Ann. Agric. Environ. Med. 26: 39-45. https://doi.org/10.26444/aaem/82626
- Addis MF, Cubeddu T, Pilicchi Y, Rocca S, Piccinini R. 2019. Chronic intramammary infection by Listeria monocytogenes in a clinically healthy goat - A case report. BMC Vet. Res. 15: 229.
- Varhimo E, Varmanen P, Fallarero A, Skogman M, Pyorala S, Iivanainen A, et al. 2011. Alpha- and β-casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Vet. Microbiol. 149: 381-389. https://doi.org/10.1016/j.vetmic.2010.11.010
- Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, et al. 2021. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet. Q. 41: 107-136. https://doi.org/10.1080/01652176.2021.1882713
- Nimjee SM, White RR, Becker RC, Sullenger BA. 2017. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol. 57: 61-79. https://doi.org/10.1146/annurev-pharmtox-010716-104558
- Torres-Chavolla E, Alocilja EC. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24: 3175-3182. https://doi.org/10.1016/j.bios.2008.11.010
- Li D, Liu L, Huang Q, Tong T, Zhou Y, Li Z, et al. 2021. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World J. Microbiol. Biotechnol. 37: 45.
- Ning Y, Cheng L, Ling M, Feng X, Chen L, Wu M, et al. 2015. Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathog. Dis. 73: ftv034.
- Zhao M, Li W, Liu K, Li H, Lan X. 2019. C4-HSL aptamers for blocking qurom sensing and inhibiting biofilm formation in Pseudomonas aeruginosa and its structure prediction and analysis. PLoS One 14: e0212041.
- Kusumawati A, Mustopa AZ, Wibawan IWT, Setiyono A. 2022. A sequential toggle cell - SELEX DNA aptamer for targeting Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli bacteria. J. Genet. Eng. Biotechnol. 20: 95.
- Mustopa AZ, Puspitasari IF, Fatimah, Triratna L, Kartina G. 2018. Genetic diversity of mastitis cow's milk bacteria based on RAPD-PCR. Biodiversitas 19: 1714-1721. https://doi.org/10.13057/biodiv/d190517
- Mustopa AZ, Fatimah F. 2014. Diversity of lactic acid bacteria isolated from indonesian traditional fermented foods. Microbiol. Indones. 8: 48-57. https://doi.org/10.5454/mi.8.2.2
- Oroh SB, Mustopa AZ, Budiarti S, Budiarto BR. 2020. Inhibition of enteropathogenic Escherichia coli biofilm formation by DNA aptamer. Mol. Biol. Rep. 47: 7567-7573. https://doi.org/10.1007/s11033-020-05822-8
- Mladenovic K, Muruzovic M, Zugic-Petrovic T, Comic L. 2018. The influence of environmental factors on the planktonic growth and biofilm formation of Escherichia coli. Kragujev. J. Sci. 40: 205-216. https://doi.org/10.5937/kgjsci1840205m
- Shatila F, Yasa I, Yalcin HT. 2020. Inhibition of Salmonella enteritis-dis biofilms by Salmonella invasion protein-targeting aptamer. Biotechnol. Lett. 42: 1963-1974. https://doi.org/10.1007/s10529-020-02920-2
- Monistero V, Graber HU, Pollera C, Cremonesi P, Castiglioni B, Bottini E, et al. 2018. Staphylococcus aureus isolates from bovine mastitis in eight countries: Genotypes, detection of genes encoding different toxins and other virulence genes. Toxins (Basel) 10: 247.
- Ote I, Taminiau B, Duprez JN, Dizier I, Mainil JG. 2011. Genotypic characterization by polymerase chain reaction of Staphylococcus aureus isolates associated with bovine mastitis. Vet. Microbiol. 153: 285-292. https://doi.org/10.1016/j.vetmic.2011.05.042
- Pang M, Sun L, He T, Bao H, Zhang L, Zhou Y, et al. 2017. Molecular and virulence characterization of highly prevalent Streptococcus agalactiae circulated in bovine dairy herds. Vet. Res. 48: 65.
- Keefe G. 2012. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet. Clin. North Am. - Food Anim. Pract. 28: 203-216. https://doi.org/10.1016/j.cvfa.2012.03.010
- Sukhnanand S, Dogan B, Ayodele MO, Zadoks RN, Craver MPJ, Dumas NB, et al. 2005. Molecular subtyping and characterization of bovine and human Streptococcus agalactiae isolates. J. Clin. Microbiol. 43: 1177-1186. https://doi.org/10.1128/JCM.43.3.1177-1186.2005
- Kabelitz T, Aubry E, van Vorst K, Amon T, Fulde M. 2021. The role of Streptococcus spp. in bovine mastitis. Microorganisms 9: 1497.
- Fernandes JBC, Zanardo LG, Galvao NN, Carvalho IA, Nero LA, Moreira MAS. 2011. Escherichia coli from clinical mastitis: serotypes and virulence factors. J. Vet. Diagn. Investig. 23: 1146-1152. https://doi.org/10.1177/1040638711425581
- Bradley AJ, Green MJ. 2001. Adaptation of Escherichia coli to the bovine mammary gland. J. Clin. Microbiol. 39: 1845-1849. https://doi.org/10.1128/JCM.39.5.1845-1849.2001
- Milanov D, Prunic B, Velhner M, Todorovic D, Polacek V. 2015. Investigation of biofilm formation and phylogenetic typing of Escherichia coli strains isolated from milk of cows with mastitis. Acta Vet. Brno. 65: 202-216. https://doi.org/10.1515/acve-2015-0017
- Pedersen RR, Kromker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jorgensen E. 2021. Biofilm research in bovine mastitis. Front. Vet. Sci. 8: 656810.
- Gomes F, Saavedra MJ, Henriques M. 2016. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. Pathog. Dis. 74: ftw006.
- Abril AG, Villa TG, Barros-Velazquez J, Canas B, Sanchez-Perez A, Calo-Mata P, et al. 2020. Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis. Toxins (Basel) 12: 537.
- Lister JL, Horswill AR. 2014. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 4: 178.
- Moormeier DE, Bayles KW. 2017. Staphylococcus aureus biofilm: a complex developmental organism. Mol. Microbiol. 104: 365-376. https://doi.org/10.1111/mmi.13634
- Thiran E, Di Ciccio PA, Graber HU, Zanardi E, Ianieri A, Hummerjohann J. 2018. Biofilm formation of Staphylococcus aureus dairy isolates representing different genotypes. J. Dairy Sci. 101: 1000-1012. https://doi.org/10.3168/jds.2017-13696
- Rosini R, Margarit I. 2015. Biofilm formation by Streptococcus agalactiae: Influence of environmental conditions and implicated virulence factor. Front. Cell. Infect. Microbiol. 5: 6.
- Sohail MN, Rathnamma D, Isloor S, Veeregowda B, Sharada R. 2019. Detection of biofilm formation ability of Streptococcus agalactiae isolated from bovine mastitis cases. Int. J. Farm Sci. 9: 107.
- Sakamoto T, Ennifar E, Nakamura Y. 2018. Thermodynamic study of aptamers binding to their target proteins. Biochimie 145: 91-97. https://doi.org/10.1016/j.biochi.2017.10.010
- Bayrac AT, Donmez SI. 2018. Selection of DNA aptamers to Streptococcus pneumonia and fabrication of graphene oxide based fluorescent assay. Anal. Biochem. 556: 91-98. https://doi.org/10.1016/j.ab.2018.06.024
- Ozalp VC, Bilecen K, Kavruk M, Avni Oktem H. 2013. Antimicrobial aptamers for detection and inhibition of microbial pathogen growth. Future Microbiol. 8: 387-401. https://doi.org/10.2217/fmb.12.149
- Giacomucci S, Cros CDN, Perron X, Mathieu-Denoncourt A, Duperthuy M. 2019. Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS One 14: e0221431.
- Shatila F, Yalcin HT, Yasa I. 2019. Insight on microbial biofilms and recent antibiofilm approaches. Acta Biologica Turcica 32: 220-235.
- Ommen P, Hansen L, Hansen BK, Vu-Quang H, Kjems J, Meyer RL. 2022. Aptamer-Targeted Drug Delivery for Staphylococcus aureus biofilm. Front. Cell. Infect. Microbiol. 12: 814340.
- Meyer C, Hahn U, Rentmeister A. 2011. Cell-specific aptamers as emerging therapeutics. J. Nucleic Acids 2011: 904750.
- Kalra P, Dhiman A, Cho WC, Bruno JG, Sharma TK. 2018. Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front. Mol. Biosci. 5: 41.
- Soundy J, Day D. 2017. Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS One 12: e0185385.
- Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, et al. 2021. Recent Progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl. Mater. Interfaces 13: 9500-9519. https://doi.org/10.1021/acsami.0c05750
- Rahimizadeh K, Al Shamaileh H, Fratini M, Chakravarthy M, Stephen M, Shigdar S, et al. 2017. Development of cell-specific aptamers: Recent advances and insight into the selection procedures. Molecules 22: 2070.
- Hasegawa H, Savory N, Abe K, Ikebukuro K. 2016. Methods for improving aptamer binding affinity. Molecules 21: 421.