DOI QR코드

DOI QR Code

Cheonggukjang Fermented with Bacillus subtilis SCGB574 Ameliorates High Fat Diet-Deteriorated Large Intestinal Health in Rat Model

  • Jae Ho, Choi (Subtropical/Tropical Organism Gene Bank, Jeju National University) ;
  • Jiyon, Kim (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Taekyun, Shin (Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University) ;
  • Myeong Seon, Ryu (Department of Research and Development, Microbial Institute for Fermentation Industry (MIFI)) ;
  • Hee-Jong, Yang (Department of Research and Development, Microbial Institute for Fermentation Industry (MIFI)) ;
  • Do-Youn, Jeong (Department of Research and Development, Microbial Institute for Fermentation Industry (MIFI)) ;
  • Hong-Seok, Son (Department of Food Biosciences and Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Tatsuya, Unno (Subtropical/Tropical Organism Gene Bank, Jeju National University)
  • 투고 : 2022.08.07
  • 심사 : 2022.11.15
  • 발행 : 2022.12.28

초록

Cheonggukjang is a traditional fermented food in Korea, which is known to exert beneficial effects on health. In this study, we evaluated the effects of cheonggukjang fermented by Bacillus subtilis SCGB 574 (B574) on high fat diet (HFD)-deteriorated large intestinal health. Rats were fed with HFD or HFD supplemented with 10.1% cheonggukjang (B574). Fecal microbiota was analyzed based on 16S rRNA gene sequences, and the fecal and serum metabolome were measured using GC-MS. Our results showed that SCGB574 intake significantly reduced body weight, restored tight junction components, and ameliorated inflammatory cell infiltration. SCGB574 also shifted gut microbiota by increasing the abundance of short chain fatty acid producers such as Alistipes and Flintibacter, although it decreased the abundance of Lactobacillus. Serum and fecal metabolome analyses showed significantly different metabolic profiles between the groups. The top five metabolites increased by SCGB574 were i) arginine biosynthesis, ii) alanine, aspartate, and glutamate metabolism; iii) starch and sucrose metabolism; iv) neomycin, kanamycin, and gentamicin biosynthesis; and v) galactose metabolism. These results showed that cheonggukjang fermented by SCGB574 ameliorates adverse effects of HFD through improving intestinal health.

키워드

과제정보

This research was supported, in part, by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03012862) and the Traditional Culture Convergence Research Program through the NRF funded by the Ministry of Science and Information and Communications Technology (ICT) (NRF-2016M3C1B5907152), Republic of Korea. We are grateful to Sustainable Agriculture Research Institute (SARI) in Jeju National University for providing the experimental facilities.

참고문헌

  1. Kim IS, Kim CH, Yang WS. 2021. Physiologically active molecules and functional properties of soybeans in human health-A current perspective. Int. J. Mol. Sci. 22: 4054.
  2. Ashaolu TJ, Ashaolu JO, Adeyeye SAO. 2021. Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. J. Appl. Microbiol. 130: 677-687. https://doi.org/10.1111/jam.14843
  3. Markowiak-Kopec P, Slizewska K. 2020. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12: 1107.
  4. Lattimer JM, Haub MD. 201. Effects of dietary fiber and its components on metabolic health. Nutrients 2: 1266-1289. https://doi.org/10.3390/nu2121266
  5. Muller M, Canfora EE, Blaak EE. 2018. Gastrointestinal transit time, glucose homeostasis and metabolic health: Modulation by dietary fibers. Nutrients 10: 275.
  6. Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. 2021. Anti-inflammatory and immunomodulatory properties of fermented plant foods. Nutrients 13: 1516. https://doi.org/10.3390/nu13010075
  7. Cao ZH, Green-Johnson JM, Buckley ND, Lin QY. 2019. Bioactivity of soy-based fermented foods: A review. Biotechnol. Adv. 37: 223-238. https://doi.org/10.1016/j.biotechadv.2018.12.001
  8. Jeong DY, Daily JW, Lee GH, Ryu MS, Yang HJ, Jeong SY, et al. 2020. Short-term fermented soybeans with Bacillus amyloliquefaciens potentiated insulin secretion capacity and improved gut microbiome diversity and intestinal integrity to alleviate Asian type 2 diabetic symptoms. J. Agric. Food Chem. 68: 13168-13178. https://doi.org/10.1021/acs.jafc.9b07962
  9. do Prado FG, Pagnoncelli MGB, de Melo Pereira GV, Karp SG, Soccol CR. 2022. Fermented soy products and their potential health benefits: A review. Microorganisms 10: 1606.
  10. Huang C, Pang D, Luo Q, Chen X, Gao Q, Shi L, et al. 2016. Soy isoflavones regulate lipid metabolism through an AKT/mTORC1 pathway in Diet-Induced Obesity (DIO) male rats. Molecules 21: 586.
  11. Squadrito F, Marini H, Bitto A, Altavilla D, Polito F, Adamo EB, et al. 2013. Genistein in the metabolic syndrome: results of a randomized clinical trial. J. Clin. Endocrinol. Metab. 98: 3366-3374. https://doi.org/10.1210/jc.2013-1180
  12. Nagata C, Wada K, Tamura T, Konishi K, Goto Y, Koda S, et al. 2017. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: the Takayama study. Am. J. Clin. Nutr. 105: 426-431. https://doi.org/10.3945/ajcn.116.137281
  13. Kurosawa Y, Nirengi S, Homma T, Esaki K, Ohta M, Clark JF, et al. 2015. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci. Rep. 5: 11601.
  14. Gaman L, Stoian I, Atanasiu V. 2011. Can ageing be slowed?: Hormetic and redox perspectives. J. Med. Life 4: 346-351.
  15. Silva S, Michniak-Kohn B, Leonardi GR. 2017. An overview about oxidation in clinical practice of skin aging. An. Bras. Dermatol. 92: 367-374. https://doi.org/10.1590/abd1806-4841.20175481
  16. Carmona JJ, Michan S. 2016. Biology of healthy aging and longevity. Rev. Invest. Clin. 68: 7-16.
  17. Hong S, Hwang SW, Yang HJ, Jeong DY, Kim O. 2019. Anti-atopic dermatitis effect of the soybean fermented by B. amyloliquefaciens via inhibiting IL-31. J. Biomed. Transl. Res. 20: 30-36. https://doi.org/10.12729/jbtr.2019.20.2.030
  18. Kim SY, Lee KB, Cho YH, Yang HJ, Ryu MS, Yoo YC. 2020. Inhibitory effect of the extract of Cheonggukjang fermented with Bacillus amyloliquefaciens SCGB1 on LPS-Induced inflammation and inflammatory diseases. J. Korean. Soc. Food. Sci. Nutr. 49: 8.
  19. Monk JM, Wu W, Lepp D, Wellings HR, Hutchinson AL, Liddle DM, et al. 2019. Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. J. Nutr. Biochem. 70: 91-104. https://doi.org/10.1016/j.jnutbio.2019.04.009
  20. Lommen A. 2009. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data pre-processing. Anal. Chem. 81: 3079-3086. https://doi.org/10.1021/ac900036d
  21. Tsugawa H, Bamba T, Shinohara M, Nishiumi S, Yoshida M, Fukusaki E. 2011. Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis. J. Biosci. Bioeng. 112: 292-298. https://doi.org/10.1016/j.jbiosc.2011.05.001
  22. Kim JH, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. 2005. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J. Pharmacol. Sci. 97: 124-131. https://doi.org/10.1254/jphs.FP0040184
  23. Winzell MS, Ahren B. 2004. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53 Suppl 3: S215-219. https://doi.org/10.2337/diabetes.53.suppl_3.S215
  24. de Vos WM, Tilg H, Van Hul M, Cani PD. 2022. Gut microbiome and health: mechanistic insights. Gut 71: 1020-1032. https://doi.org/10.1136/gutjnl-2021-326789
  25. Untersmayr E, Brandt A, Koidl L, Bergheim I. 2022. The intestinal barrier dysfunction as driving factor of inflammaging. Nutrients 14: 949.
  26. Khoshbin K, Camilleri M. 2020. Effects of dietary components on intestinal permeability in health and disease. Am. J. Physiol. Gastrointest Liver Physiol. 319: G589-G608. https://doi.org/10.1152/ajpgi.00245.2020
  27. Van Klinken BJ, Van der Wal JW, Einerhand AW, Buller HA, Dekker J. 1999. Sulphation and secretion of the predominant secretory human colonic mucin MUC2 in ulcerative colitis. Gut 44: 387-393. https://doi.org/10.1136/gut.44.3.387
  28. Grondin JA, Kwon YH, Far PM, Haq S, Khan WI. 2020. Mucins in intestinal mucosal defense and inflammation: learning from clinical and experimental studies. Front. Immunol. 11: 2054.
  29. Forster C. 2008. Tight junctions and the modulation of barrier function in disease. Histochem. Cell Biol. 130: 55-70. https://doi.org/10.1007/s00418-008-0424-9
  30. Kanwal S, Joseph TP, Aliya S, Song S, Saleem MZ, Nisar MA, et al. 2020. Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways. J. Funct. Foods 64: 103641.