DOI QR코드

DOI QR Code

Anti-Allergic Effect of Fermented Extracts of Medicinal Plants Andrographis paniculate, Salvia plebeia R. Br., Canavalia gladiate, Eleuthorococcus senticosus, Ulmus davidiana var. japonica, and Clerodendrum trichotomum Thunb. ex Murray

  • Mi Jeong, Choi (Biomedical Biotechnology Research Institute Co., Ltd.) ;
  • Yu Ri, Kim (Biomedical Biotechnology Research Institute Co., Ltd.)
  • Received : 2022.08.18
  • Accepted : 2022.10.12
  • Published : 2022.12.28

Abstract

Since the main symptoms of COVID-19 involve the respiratory system, the infection rate of this disease is predicted to be higher in patients with other respiratory conditions such as allergic rhinitis. In such a situation, it will be meaningful to conduct research on an allergy treatment that has fewer side effects and can effectively reduce allergy symptoms. Here, we prepared experimental samples under various fermentation conditions with mixed extracts of six medicinal plants. To examine the anti-allergic efficacy of these samples, an egg albumin-induced allergic rhinitis animal model experiment, a serum histamine and IgE experiment, and a COX and LO inhibitory activity experiment were conducted. As a result of animal experiments, OVA+SP-4 showed superior efficacy compared to OVA+SP-1 in nasal rubbing and sneezing experiments and had anti-allergic efficacy similar to that of OVA-cetirizine. The serum histamine concentration of OVA+SP-4 was also 1.3 times higher than that of the OVA+cetirizine group, showing a high histamine reduction ability, and IgE showed the same trend. An analysis of COX inhibitory efficacy also confirmed that COX-1 and COX-2 inhibitory efficacy is high, and the longer the fermentation time, the higher the antiallergic efficacy. The composition proposed by this study is expected to have a significant effect on sustainable allergy prevention and treatment in the future by applying it to human patients.

Keywords

References

  1. Ren J, Pang W, Luo Y, Cheng D, Qiu K, Rao Y, et al. 2022. Impact of allergic rhinitis and asthma on covid-19 infection, hospitalization, and mortality. J. Allergy Clin. Immunol. Prac. 10: 124-133. https://doi.org/10.1016/j.jaip.2021.10.049
  2. Niggemann B, Beyer K. 2014. Factors augmenting allergic reactions. Allergy 69: 1582-1587. https://doi.org/10.1111/all.12532
  3. Patterson R, Dykewicz MS, Grammer LC, Greenberger PA, Lawrence ID, Walker CL, et al. 1990. Classification of immediate-type, life-threatening allergic or pseudoallergic reactions. Chest 98: 257-259.
  4. Yao C, Narumiya S. 2018. Prostaglandin-cytokine crosstalk in chronic inflammation. Br. J. Pharmacol. 176: 337-354. https://doi.org/10.1111/bph.14530
  5. Yanes DA, Mosser-Goldfarb JL. 2018. Emerging therapies for atopic dermatitis: The prostaglandin/leukotriene pathway. J. Am. Acad. Dermatol. 78: S71-S75. https://doi.org/10.1016/j.jaad.2017.12.021
  6. Bando T, Fujita S, Nagano N. 2017. Differential usage of COX-1 and COX-2 in prostaglandin production by mast cells and basophils. Biochem. Biophys. Rep. 10: 82-87.
  7. Seo MJ, Oh DK. 2017. Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog. Lipid Res. 66: 50-687. https://doi.org/10.1016/j.plipres.2017.04.003
  8. Song H, Park J, Bui PTC, Choi K, Gye MC, Hong YC, et al. 2017. Bisphenol a induces COX-2 through the mitogen-activated protein kinase pathway and is associated with levels of inflammation-related markers in elderly populations. Environ. Res. 158: 490-498. https://doi.org/10.1016/j.envres.2017.07.005
  9. Gur ZT, Caliskan B, Banoglu E. 2018. Drug discovery approaches targeting 5-lipoxygenase-activating protein(FLAP) for inhibition of cellular leukotriene biosynthesis. Eur. J. Med. Chem. 153: 34-48. https://doi.org/10.1016/j.ejmech.2017.07.019
  10. Hafner AK, Kahnt AS, Steinhilber D. 2019. Beyond leukotriene formation-The noncanonical functions of 5-lipoxygenase. Prostaglandins Other Lipid Mediat. 142: 24-32. https://doi.org/10.1016/j.prostaglandins.2019.03.003
  11. Juthani V, Clearfield E, Chuck RS. 2017. Non-steroidal anti-inflammatory drugs versus corticosteroids for controlling inflammation after uncomplicated cataract surgery. Cochrane Database Syst. Rev. 7: CD10516.
  12. Duan P, Liu Y, Li J. 2017. The comparative efficacy and safety of topical non-steroidal anti-inflammatory drugs for the treatment of anterior chamber inflammation after cataract surgery: a systematic review and network meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 255: 639-649. https://doi.org/10.1007/s00417-017-3599-8
  13. Haley RM, von Recum HA. 2018. Localized and targeted delivery of NSAIDs for treatment of inflammation: A review. Exp. Biol. Med. 244: 433-444. https://doi.org/10.1177/1535370218787770
  14. Tziona P, Theodosis-Nobelos P, Rekka EA. 2017. Medicinal chemistry approaches of controlling gastrointestinal side effects of non-steroidal anti-inflammatory drugs: Endogenous protective mechanisms and drug design. Med. Chem. 13: 408-420.
  15. Pullerits T, Praks L, Ristioja V, Lotvall J. 2002. Comparison of a nasal glucocorticoid, antileukotriene, and a combination of antileukotriene and antihistamine in the treatment of seasonal allergic rhinitis. J. Allergy Clin. Immunol. 109: 949-955. https://doi.org/10.1067/mai.2002.124467
  16. Rodrigo GJ, Yanez A. 2006. The role of antileukotriene therapy in seasonal allergic rhinitis: a systematic review of randomized trials. Ann. Allergy Asthma Immunol. 96: 779-786. https://doi.org/10.1016/S1081-1206(10)61339-7
  17. Gu L, Weng X. 2001. Antioxidant activity and components of Salvia plebeia R.Br.: a Chinese herb. Food Chem. 73: 299-305. https://doi.org/10.1016/S0308-8146(00)00300-9
  18. Jin X, Lu Y, Wei D, Wang Z. 2008. Chemical fingerprint and quantitative analysis of Salvia plebeia R. Br. by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 48: 100-104. https://doi.org/10.1016/j.jpba.2008.05.027
  19. Li N, Li X, Feng ZG. 2007. Chemical constituents from Canavalia gladiate. J. Shenyang Pharm. University 24: 676-678. https://doi.org/10.3969/j.issn.1006-2858.2007.11.004
  20. Choi SY, Lee S, Choi W. 2010. Isolation and anti-inflammatory activity of Bakuchiol from Ulmus davidiana var. japonica. J. Med. Food 13: 1019-1023. https://doi.org/10.1089/jmf.2009.1207
  21. Xu RL, Wang R, Ding L, Shi YP. 2013. New cytotoxic steroids from the leaves of Clerodendrum trichotomum. Steroids 78: 711-716. https://doi.org/10.1016/j.steroids.2013.03.002
  22. Park HJ, Jung DH, Joo HM, Kang NS, Jang SA, Lee JG, et al. 2010. The comparative study of anti-allergic and anti-inflammatory effects by fermented red ginseng and red ginseng. Korean J. Plant Resour. 23: 415-422.
  23. Li E, Yang H, Zou Y, Wang H, Hu T, Li Q, et al. 2019. In-vitro digestion by simulated gastrointestinal juices of Lactobacillus rhamnosus cultured with mulberry oligosaccharides and subsequent fermentation with human fecal inocula. Lwt Food Sci. Technol. 101: 61-68. https://doi.org/10.1016/j.lwt.2018.11.029
  24. Yu AO, Leveau JH, Marco ML. 2020. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environ. Microbiol. Rep. 12: 16-29. https://doi.org/10.1111/1758-2229.12794
  25. Kim KB, Lee EG, Chai OH, Song CH, Jeong JM. 2007. Inhibitory effects of phyto extract mixture (PEM381) on type I allergic reaction. J. Korean Soc. Food Sci. Nutr. 36: 155-162. https://doi.org/10.3746/JKFN.2007.36.2.155
  26. Jeong JM. 2008. Antioxidative and antiallergic effects of aronia (Aronia melanocarpa) extract. J. Korean Soc. Food Sci. Nutr. 37: 1109-1113. https://doi.org/10.3746/JKFN.2008.37.9.1109
  27. Kim KM. 1966. Screening of anti-allergic agents using lipoxygenase assay and degranulation marker. J. Drug Res. 5: 45-48.
  28. Nakatsuka M, Osawa Y. 1983. Selective inhibition of the 12- lipoxygenase pathway of arachidonic acid metabolismby L-arginine or sodium nitroprusside in intact humanplatelets. Biochem. Biophys. Res. Commun. 200: 1630-1640. https://doi.org/10.1006/bbrc.1994.1638
  29. Lee SY, Lee SH, Jung KH, Kim BG, Jung HC, Kim KK, et al. 2000. The effects of cyclo- oxygenase-2 (COX-2) inhibitor on COX-2 and prostaglandin E2 expression in ovalbumin induced early phase bronchoconstriction of rats. Tuberculosis Resp. Dis. 48: 191-202. https://doi.org/10.4046/trd.2000.48.2.191
  30. Lajter I, Pan SP, Nikles S, Ortmann S, Vasas A, Csupor-Loffler B, et al. 2015. Inhibition of COX-2 and NF-κB1 gene expression, NO production, 5-LOX, and COX-1 and COX-2 enzymes by extracts and constituents of Onopordum acanthium. Planta Med. 81: 1270-1276. https://doi.org/10.1055/s-0035-1546242
  31. Ahn KM. 2004. Role of mast cell in allergic inflammation and innate immunity. Korean J. Pediatr. 47: 1137-41.
  32. Brown JM, Wilson TM, Metcalfe DD. 2008. The mast cell and allergic disease: role in pathogenesis and implications for therapy. Clin. Exp. Allergy 38: 4-18.
  33. Um JN, Min JW, Joo KS, Kang HC. 2017. Antioxidant, anti-wrinkle activity and whitening effect of fermented mixture extracts of Angelica gigas, Paeonia lactiflora, Rehmannia chinensis and Cnidium officinale. Korean J. Med. Crop Sci. 25: 152-159. https://doi.org/10.7783/KJMCS.2017.25.3.152
  34. Kim CJ, Seong ES, Yoo JH, Lee JG, Kim NJ, Choi SK, et al. 2016. Biological activity of Panax ginseng C. A. Meyer culture roots fermented with microorganisms. Korean J. Med. Crop Sci. 24: 191-197. https://doi.org/10.7783/KJMCS.2016.24.3.191
  35. Kim MJ, Yu SM, Kim DY, Heo TI, Lee JW, Park J, et al. 2018. Physicochemical characterization of fermented Rhododendron micranthum Turcz. extract and its biological activity. J. Life Sci. 28: 938-944. https://doi.org/10.5352/JLS.2018.28.8.938
  36. Hundley TR, Prasad AR, Beaven MA. 2001. Elevated levels of cyclooxygenase-2 in antigen-stimulated mast cells is associated with minimal activation of p38 mitogen-activated protein kinase. J. Immunol. 167: 1629-1636. https://doi.org/10.4049/jimmunol.167.3.1629
  37. Mitchell JA, Larkin S, Williams TJ. 1995. Cyclooxygenase-2: Regulation and relevance in inflammation. Biochem. Pharmacol. 50: 1535-1542. https://doi.org/10.1016/0006-2952(95)00212-X
  38. Herschman HR. 1996. Prostaglandin synthase 2. Biochim. Biophys. Acta 1299: 125-140. https://doi.org/10.1016/0005-2760(95)00194-8
  39. Lee YG, Kim YM, Jeong HJ, Lee SE, Im DS, Kim HS. 2017. Anti-allergic activity of the extracts from houttuynia cordata thunb fermented by lactic acid bacteria. J. Environ. Sci. Int. 26: 1355-1362. https://doi.org/10.5322/JESI.2017.26.12.1355
  40. Lebeer S, Claes I, Tytgat HL, Verhoeven TL, Marien E, von Ossowski I, et al. 2012. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl. Environ. Microbiol. 78: 185-193. https://doi.org/10.1128/AEM.06192-11
  41. Claes IJJ, Lebeer S, Shen C, Verhoeven TLA, Dilissen E, De Hertogh G, et al. 2010. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin. Exp. Immunol. 162: 306-314. https://doi.org/10.1111/j.1365-2249.2010.04228.x
  42. Mermer MJ, Gupta MC, Salamon PB, Benson DR. 2002. Thoracic vertebral body exostosis as a cause of myelopathy in a patient with hereditary multiple exostoses. Clin. Spine Surgery 15: 144-148.
  43. Radmark O, Samuelsson B. 2009. 5-Lipoxygenase: mechanisms of regulation1. J. Lipid Res. 50: S40-S45. https://doi.org/10.1194/jlr.R800062-JLR200
  44. Park EJ, Lee HJ, Park JI. 2004. Regulatory effects of allergic bronchial asthma responses by Kagamjwagwieum. J. Pediatr. Korean Med. 18: 31-48.
  45. Jung JY, Park CA. 2020. Anti-inflammatory effects of andrographis herba meoh extract on lps-induced raw 264.7 cells. Herb. Formula Sci. 28: 147-155.
  46. Jo SY, Lee UY, Kim EY, Lee SJ, Her JW, Yoon TJ. 2010. A study on the anti-inflammatory and anti-allergic effect of Salvia plebeia R. extracts. Korean J. Pharmacog. 41: 31-37.
  47. Kim JP, Lee HH, Moon JH, Ha DR, Kim ES, Kim JH, et al. 2013. Isolation and identification of antioxidants from methanol extract of sword bean (Canavalia gladiata). Korean J. Food Sci. Technol. 45: 777-784. https://doi.org/10.9721/KJFST.2013.45.6.777