DOI QR코드

DOI QR Code

Pichia pastoris에서 강낭콩 Leghemoglobin a의 생산, 정제 및 특징

Production, Purification, and Characterization of Phaseolus vulgaris Leghemoglobin a in Pichia pastoris

  • 김준영 (동의대학교 바이오응용공학부 의생명공학전공) ;
  • 한다희 (동의대학교 바이오응용공학부 의생명공학전공) ;
  • 박근오 (동의대학교 바이오응용공학부 의생명공학전공) ;
  • 남수완 (동의대학교 바이오응용공학부 의생명공학전공) ;
  • 김연희 (동의대학교 바이오응용공학부 의생명공학전공) ;
  • 김한우 (극지연구소 생명과학연구본부) ;
  • 전숭종 (동의대학교 바이오응용공학부 의생명공학전공)
  • Jun-Young, Kim (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering,Dong-Eui University) ;
  • Da-Hee, Han (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering,Dong-Eui University) ;
  • Geun-o, Park (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering,Dong-Eui University) ;
  • Soo-Wan, Nam (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering,Dong-Eui University) ;
  • Yeon-Hee, Kim (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering,Dong-Eui University) ;
  • Han-Woo, Kim (Division of Life Sciences, Korea Polar Research Institute (KOPRI)) ;
  • Sung-Jong, Jeon (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering,Dong-Eui University)
  • 투고 : 2022.11.02
  • 심사 : 2022.11.21
  • 발행 : 2022.12.28

초록

식물성 육류에서 미각적인 자극을 얻기 위해 사용하는 heme 함유 단백질의 지속적인 생산을 위해 강낭콩 유래 leghemoglobin a (PhLba) 유전자를 pPICZαA에 클로닝하고 Pichia pastoris에서 발현하였다. 재조합 PhLba 단백질은 가용화 형태로 배양 배지속으로 분비되었다. 정제된 PhLba의 분자량은 SDS-PAGE 상에서 16.5 kDa으로 나타났다. 재조합 PhLba holoprotein의 수율은 배양 배지에 hemin을 첨가함으로써 향상되었다. 이것은 PhLba의 apo 형태가 보조인자와 함께 효과적으로 포화된다는 것을 나타낸다.

In this study, Phaseolus vulgaris (kidney bean) leghemoglobin a (PhLba) gene was cloned into pPICZαA and expressed in Pichia pastoris to sustainably produce a heme-carrying protein for organoleptic use in plant-based meat. The recombinant PhLba protein was secreted into the culture medium in a solubilized form, and the molecular weight of the purified PhLba was estimated to be 16.5 kDa using SDS-PAGE. In addtion, the yield of recombinant PhLba holoprotein was enhanced by supplementation of the cultivation medium with hemin. This result indicates that the apo-forms of PhLba can be effectively saturated with cofactor.

키워드

과제정보

This work was supported by Dong-Eui University Grant(202201710001).

참고문헌

  1. Appleby CA. 1984. Leghemoglobin and Rhizobium respiration. Annu. Rev. Plant Physiol. 35: 443-478. https://doi.org/10.1146/annurev.pp.35.060184.002303
  2. Hardison R. 1998. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J. Exp. Biol. 201: 1099-1117. https://doi.org/10.1242/jeb.201.8.1099
  3. Fraser RZ, Shitut M, Agrawal P, Mendes O, Klapholz S. 2018. Safety evaluation of soy leghemoglobin protein preparation derived from pichia pastoris, intended for use as a flavor catalyst in plant-based meat. Int. J. Toxicol. 37: 241-62. https://doi.org/10.1177/1091581818766318
  4. Hooda J, Shah, A, Zhang L. 2014. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients 3: 1080-1102. https://doi.org/10.3390/nu6031080
  5. Sikorski MM, Topunov AF, Strozycki PM, Vorgias CE, Wilson KS, Legocki AB. 1995. Cloning and expression of plant leghemoglobin cDNA of Lupinus luteus in Escherichia coli and purification of the recombinant protein. Plant Sci. 108: 109-117. https://doi.org/10.1016/0168-9452(95)04125-E
  6. Arrendondo-Peter R, Moran JF, Sarath G, Luan P, Klucas RV. 1997. Molecular cloning of the cowpea leghemoglobin II gene and expression of its cDNA in Escherichia coli. Plant Physiol. 114: 493-500. https://doi.org/10.1104/pp.114.2.493
  7. Prytulla S, Dyson HJ, Wright PE. 1996. Gene synthesis, highlevel expression and assignment of backbone 15N and 13C resonances of soybean leghemoglobin. FEBS Lett. 399: 283-289. https://doi.org/10.1016/S0014-5793(96)01278-1
  8. Lehtovaara P, Ellfolk N. 1975. The amino-acid sequence of leghemoglobin component a from Phaseolus vulgaris (kidney bean). Eur. J. Biochem. 54: 577-584. https://doi.org/10.1111/j.1432-1033.1975.tb04170.x
  9. Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, et al. 1997. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene 190: 55-62. https://doi.org/10.1016/S0378-1119(96)00672-5
  10. Sue MP, Mariana LF, Brian M, Linda MH. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270. https://doi.org/10.1002/yea.1208
  11. Jo JH, Im EM, Kim SH, Lee HH. 2011. Surface display of human lactoferrin using a glycosylphosphatidylinositol anchored protein of Saccharomyces cerevisiae in Pichia pastoris. Biotechnol. Lett. 33: 1113-1120. https://doi.org/10.1007/s10529-011-0536-5
  12. Conesa A, van den Hondel CAMJJ, Punt PJ. 2000. Studies on the production of fungal peroxidases in Aspergillus niger. Appl. Environ. Microbiol. 66: 3016-3023. https://doi.org/10.1128/AEM.66.7.3016-3023.2000
  13. Segura MD, Levin G, Miranda MV, Mendive FM, Targovnik HM, Cascone O. 2005. High-level expression and purification of recombinant horseradish peroxidase isozyme C in SF-9 insect cell culture. Process Biochem. 40: 795-800. https://doi.org/10.1016/j.procbio.2004.02.009
  14. Krainer FW, Capone S, Jager M, Vogl T, Gerstmann M, Glieder A, et al. 2015. Optimizing cofactor availability for the production of recombinant heme peroxidase in Pichia pastoris. Microb. Cell Fact. 14: 4.
  15. Lehtovaara P. 1977. Studies on ligand binding of kidney bean leghemoglobin. Acta. Chem. Scand. B31: 21-27.  https://doi.org/10.3891/acta.chem.scand.31b-0021