DOI QR코드

DOI QR Code

High-pressure NMR application for amyloid-beta peptides

  • Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2022.03.19
  • Accepted : 2022.03.20
  • Published : 2022.03.20

Abstract

High-pressure (HP) NMR is a versatile tool to investigate diverse features of proteins. This technique has been particularly powerful to elucidate structural dynamics that only populates sufficiently in a pressurized condition. Amyloidogenic proteins, which are prone to aggregate and form amyloid fibrils, often maintains highly dynamic states in its native or aggregation-prone states, and HP NMR contributed much to advance our understandings of the dynamic behaviors of amyloidogenic proteins and the molecular mechanisms of their aggregation. In this mini review, we therefore summarize recent HP NMR studies on amyloid-beta (Aβ), the representative amyloidogenic intrinsically disordered protein (IDP).

Keywords

Acknowledgement

This research was supported by the National Research Foundation (NRF) funded by the Ministry of Science & ICT (NRF-2020R1I1A2074335).

References

  1. P. Kulkarni, et al., Protein Sci. 27, 1557 (2018) https://doi.org/10.1002/pro.3458
  2. K. Madhurima, B. Nandi, and A. Sekhar, Open Biol. 11, 210012 (2021) https://doi.org/10.1098/rsob.210012
  3. A. Garcia-Pino, et al., Cell 142, 101 (2010) https://doi.org/10.1016/j.cell.2010.05.039
  4. H. Y. J. Fung, M. Birol, and E. Rhoades, Curr. Opin. Struct. Biol. 49, 36 (2018) https://doi.org/10.1016/j.sbi.2017.12.007
  5. M. P. Williamson and R. Kitahara, Biochim. Biophys. Acta 1867, 350 (2019) https://doi.org/10.1016/j.bbapap.2018.10.014
  6. J. Roche, et al., Proc. Natl. Acad. Sci. U. S. A. 109, 6945 (2012) https://doi.org/10.1073/pnas.1200915109
  7. J. Roche, C. A. Royer, and C. Roumestand, Prog. Nucl. Magn. Reson. Spectrosc. 102, 15 (2017) https://doi.org/10.1016/j.pnmrs.2017.05.003
  8. C. Dubois, I. Herrada, P. Barthe, and C. Roumestand, Molecules 25, (2020)
  9. R. W. Peterson and A. J. Wand, Rev. Sci. Instrum. 76, 094101 (2005) https://doi.org/10.1063/1.2038087
  10. C. Charlier, et al., Proc. Natl. Acad. Sci. U. S. A. 115, E4169 (2018) https://doi.org/10.1073/pnas.1803642115
  11. C. Charlier, J. M. Courtney, P. Anfinrud, and A. Bax, J. Phys. Chem. B 122, 11792 (2018) https://doi.org/10.1021/acs.jpcb.8b08456
  12. F. Chiti and C. M. Dobson, Annu. Rev. Biochem. 86, 27 (2017) https://doi.org/10.1146/annurev-biochem-061516-045115
  13. L. M. Nguyen and J. Roche, J. Magn. Reson. 277, 179 (2017) https://doi.org/10.1016/j.jmr.2017.01.009
  14. C. E. Munte, M. Beck-Erlach, W. Kremer, J. Koehler, and H. R. Kalbitzer, Angew. Chemie - Int. Ed. 52, 8943 (2013) https://doi.org/10.1002/anie.201301537
  15. D. J. Rosenman, N. Clemente, M. Ali, A. E. Garcia, and C. Wang, Chem. Commun. 54, 4609 (2018) https://doi.org/10.1039/C8CC01674G
  16. N. S. De Groot, F. X. Aviles, J. Vendrell, and S. Ventura, FEBS J. 273, 658 (2006) https://doi.org/10.1111/j.1742-4658.2005.05102.x
  17. D. J. Rosenman, C. Wang, and A. E. Garcia, J. Phys. Chem. B 120, 259 (2016) https://doi.org/10.1021/acs.jpcb.5b09379
  18. S. P. B. Vemulapalli, S. Becker, C. Griesinger, and N. Rezaei-Ghaleh, J. Phys. Chem. Lett. 12, 9933 (2021) https://doi.org/10.1021/acs.jpclett.1c02595
  19. I. A. Cavini, et al., Chem. Commun. 54, 3294 (2018) https://doi.org/10.1039/C8CC01458B
  20. M. Beck Erlach, et al., J. Phys. Chem. B 118, 5681 (2014) https://doi.org/10.1021/jp502664a
  21. C. A. Barnes, A. J. Robertson, J. M. Louis, P. Anfinrud, and A. Bax, J. Am. Chem. Soc. 141, 13762 (2019) https://doi.org/10.1021/jacs.9b06970
  22. J. Roche, J. Ying, A. S. Maltsev, and A. Bax, ChemBioChem 14, 1754 (2013) https://doi.org/10.1002/cbic.201300244
  23. J. Oroz, J. H. Kim, B. J. Chang, and M. Zweckstetter, Nat. Struct. Mol. Biol. 24, 407 (2017) https://doi.org/10.1038/nsmb.3380
  24. B. Kim and J. H. Kim, J. Kor. Mag. Reson. Soc. 24, 91 (2020) https://doi.org/10.6564/JKMRS.2020.24.3.091