DOI QR코드

DOI QR Code

Variability and Changes of Wildfire Potential over East Asia from 1981 to 2020

1981-2020년 기간 동아시아 지역 산불 발생 위험도의 변동성 및 변화 특성

  • Lee, June-Yi (Research Center for Climate Sciences, Pusan National University) ;
  • Lee, Doo Young (Research Center for Climate Sciences, Pusan National University)
  • 이준이 (부산대학교 기후과학연구소) ;
  • 이두영 (부산대학교 기후과학연구소)
  • Received : 2022.01.25
  • Accepted : 2022.02.21
  • Published : 2022.02.28

Abstract

Wildfires, which occur sporadically and irregularly worldwide, are distinct natural disturbances in combustible vegetation areas, important parts of the global carbon cycle, and natural disasters that cause severe public emergencies. While many previous studies have investigated the variability and changes in wildfires globally based on fire emissions, burned areas, and fire weather indices, studies on East Asia are still limited. Here, we explore the characteristics of variability and changes in wildfire danger over East Asia by analyzing the fire weather index for the 40 years-1981-2020. The first empirical orthogonal function (EOF) mode of fire weather index variability represents an increasing trend in wildfire danger over most parts of East Asia over the last 40 years, accounting for 29% of the total variance. The major contributor is an increase in the surface temperature in East Asia associated with global warming and multidecadal ocean variations. The effect of temperature was slightly offset by the increase in soil moisture. The second EOF mode exhibits considerable interannual variability associated with the El Nino-Southern Oscillation, accounting for 17% of the total variance. The increase (decrease) in precipitation in East Asia during El Nino (La Nina) increases (decreases) soil moisture, which in turn reduces (increases) wildfire danger. This dominant soil moisture effect was slightly offset by the temperature increase (decrease) during El Nino (La Nina). Improving the understanding of variability and changes in wildfire danger will have important implications for reducing social, economic, and ecological losses associated with wildfire occurrences.

전 세계 곳곳에서 산발적이고 불규칙적으로 발생하는 산불은 가연성 식생 지역에서 주요한 자연 변동성의 일환이면서 전 지구 탄소 순환에 중요한 역할을 하고, 공공 비상사태를 야기하는 심각한 자연재해이다. 산불 배출량, 연소 면적 및 산불기상지수를 활용한 산불 발생 위험도의 변동성 및 변화에 대한 연구가 전 세계 많은 지역에서 활발히 진행되고 있지만 동아시아 지역에 대한 연구는 아직 제한적이다. 본 연구는 1981년부터 2020년까지 지난 40년 기간 동안 산불기상지수 자료를 분석해 동아시아 지역 산불 위험도의 변동성 및 장기 변화 특성을 조사하였다. 동아시아 지역 산불 위험도의 첫 번째 주요 변동 모드는 전체 변동성의 29%를 설명하며, 대부분 지역에서 산불 발생 위험이 증가하고 있음을 나타낸다. 지구온난화 및 해양의 수 십년 주기 변동성과 연계되어 지표 기온이 상승하고 있는 것이 주요 원인이며, 이는 토양 수분의 상승 경향에 의해 그 효과가 다소 상쇄되고 있다. 두 번째 변동 모드는 엘니뇨-남방진동과 연계된 경년 변동성을 반영하며 전체 변동성의 17%를 설명한다. 엘니뇨(라니냐) 시기 동아시아 지역 강수량의 증가(감소)는 토양 수분을 증가(감소)시키며, 이에 따라 산불 위험이 감소(증가)하게 된다. 이는 지표 기온 상승(하강)에 의해 그 효과가 다소 상쇄된다. 산불 발생 위험도의 변동성 및 변화에 대한 이해와 예측을 증진하는 것은 그에 따른 피해를 저감하고 대비책을 마련하는 데 기여할 것이다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes, R. J., 2009, What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology, 15, 613-630. https://doi.org/10.1111/j.1365-2486.2008.01754.x
  2. Burke, M., Driscoll, A., Heft-Neal, S., Xue, J., Burney, J., and Wara, M., 2021, The changing risk and burden of wildfire in the United States. Proceedings of the National Academy of Sciences of the United States of America, 118, e2011048118. https://doi.org/10.1073/pnas.2011048118
  3. Bowman, D. M. J. S., Balch, J. K, Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., and Pyne, S. J., 2009, Fire in the Earth system. Science, 324, 481-484. https://doi.org/10.1126/science.1163886
  4. Chen, Y., Randerson, J. T., Morton, D. C., DeFries, R. S., Collatz, G. J., Kasibhatla, P. S., Giglio, L., Jin, Y., and Marlier, M. E. 2011: Forecasting fire season severity in South America using sea surface temperature anomalies. Science, 334, 787-791. https://doi.org/10.1126/science.1209472
  5. Chikamoto, Y., Timmermann, A., Widlansky, M. J., Balmaseda, M. A., and Stott, L., 2017, Multi-year predictability of climate, drought, and wildfire in southwestern North America. Scientific Reports, 7, 6568. https://doi.org/10.1038/s41598-017-06869-7
  6. Diffenbaugh, N. S., Knoings, A. G., and Field, C. B., 2021, Atmospheric variability contributes to increasing wildfire weather but not as much as global warming. Proceedings of the National Academy of Sciences of the United States of America, 118, e20117876118.
  7. Field, R. D., Spessa, A. C., Aziz, N. A., Camia, A., Cantin, A., Carr, R., de Groot, W. J., Dowdy, A. J., Flannigan, M. D., Manomalphiboon, K., Pappenberger, F., Tanpipat, V., and Wang, X., 2015, Development of a Global Fire Weather Database. Natural Hazards and Earth System Sciences, 15, 1407-1423. https://doi.org/10.5194/nhess-15-1407-2015
  8. Giglio, L., Randerson, J. T., and van der Werf, G. R., 2013, Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research, 118, 317-328.
  9. Hersbach, H., Bell, B., Berrisford, P., et al., 2020, The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049. https://doi.org/10.1002/qj.3803
  10. Jia, G., Shevliakova, E., Artaxo, P., De Noblet-Ducoudre, N., Houghton, R., House, J., Kitajima, K.,Lennard, C., Popp, A., Sirin, A., Sukumar, R., and Verchot, L., 2019: Land-climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [Shukla. P. R., Skea, J., Buendia, E. C., Masson-Delmotte, V., Portner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J. P., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J., (eds.)]. In press.
  11. Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., and Bowman, D. M. J. S., 2015, Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communication, 6, 7537. https://doi.org/10.1038/ncomms8537
  12. Korea Forest Service, 2021, 2021 K-Wildfire Prevention Measures. Korea Forest Service, 43 p. (in Korean)
  13. Le Page, Y.,Pereira, J. M. C., Trigo, R., da Camara, C., Oom, D., and Mota, B., 2008, Global fire activity patterns (1996-2006) and climate influence: An analysis using the World Fire Atlas. Atmospheric Chemistry and Physics, 8, 1911-1924. https://doi.org/10.5194/acp-8-1911-2008
  14. Mariani, M., Fletcher, M. S., Holz, A., and Nyman, P., 2016, ENSO controls interannual fire activity in southeast Australia. Geophysical Research Letters, 43, 10891-10900. https://doi.org/10.1002/2016GL070572
  15. Pellegrini, A. F., Ahlstrom, A., Hobbie, S. E., Reich, P. B., Nieradzik, L. P., Staver, A. C., Scharenbroch, B. C., Jumpponen, A., Anderegg, W. R. L., Randerson, J. T., and Jackson, R. B., 2017, Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 553, 194-198. https://doi.org/10.1038/nature24668
  16. Schulze, S. S., Fischer, E. C., Hamideh, S., and Mahmoud H., 2020, Wildfire impacts on schools and hospitals following the 2018 California Camp Fire. Natural Hazards, 104, 901-925. https://doi.org/10.1007/s11069-020-04197-0
  17. Skinner, W. R., Shabbar, A., Flannigan, M. D., and Logan, K., 2006, Large forest fires in Canada and the relationship to global sea surface temperatures. Journal of Geophysical Research Atmosphere, 111, D14106. https://doi.org/10.1029/2005JD006738
  18. van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S., 2017, Global fire emissions estimates during 1997-2016. Earth System Science Data, 9, 697-720. https://doi.org/10.5194/essd-9-697-2017
  19. van der Velde, I. R., van der Werf, G. R., Houweling, S., Maasakkers, J. D., Borsdorff, T., Landgraf, J., Tol P., van Kempen, T. A., van Hees, R., Hoogeveen, R., Veefkind, J. P., and Aben, I., 2021, Vast CO2 release from Australian fires in 2019-2020 constrained by satellite. Nature, 597, 366-369. https://doi.org/10.1038/s41586-021-03712-y
  20. Vitolo, C., Di Giuseppe, F., Krzeminski, B., and San- Miguel-Ayanz, J., 2019, A 1980-2018 global fire danger reanalysis dataset for the Canedian Fire Weather Indices. Sci Data 6, 190032. https://doi.org/10.1038/sdata.2019.32.
  21. Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E., and Hall, A., 2021, Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111875118. https://doi.org/10.1073/pnas.2111875118