DOI QR코드

DOI QR Code

다층 ZnO 막에 의한 모의 메틸렌블루 염료의 자외선 광촉매분해

UV Light-assisted Photocatalytic Degradation of Simluated Methylene blue Dye by Multilayered ZnO Films

  • Khan, Shenawar Ali (Department of Electronic Engineering, Jeju National University) ;
  • Zafar, Muhammad (Institute of Energy and Environment Engineering, University of the Punjab) ;
  • Kim, Woo Young (Department of Electronic Engineering, Jeju National University)
  • 투고 : 2021.01.28
  • 심사 : 2021.02.22
  • 발행 : 2022.02.28

초록

일상적인 화학제품들의 사용량이 증가함에 따라 사용되었던 염료 폐기물 처리 또한 중요한 환경적인 문제로 대두되었다. 이러한 염료폐기물은 광촉매를 이용하여 분해시킬 수 있는데, 졸-겔 기술을 활용하면 매우 비용 효율적으로 광촉매를 합성할 수 있다. 졸-겔 기술은 나노스케일의 막 형성에도 상당히 유용하며 간단하게 다층구조를 형성할 수도 있다. 본 연구에서는 다양한 염료 분해에 효과가 있는 산화아연(ZnO) 이용하여 다중 회전도포 방법으로 다층구조(3층, 5층)를 가진 ZnO 막을 형성하였다. 성능비교를 위해 단일 회전도포 방법에 의한 단층구조를 가진 ZnO 막을 대조군으로 준비하였다. X선 회절분석기 및 에너지 분산 X선 분광계를 이용하여 ZnO의 구조 및 원소분석을 수행하였고, 주사전자현미경을 통해 나노선같은 표면형상을 관찰할 수 있었다. 추가적으로 UV-Vis 분광광도계를 활용하여 자외선의 흡수도를 측정하였다. 5층구조를 가진 ZnO 막이 단층 구조를 가진 ZnO 막에 비해 모의 메틸렌 블루를 49% 더 많이 분해하였다. 결론적으로, 다층구조를 가진 ZnO 는 메틸렌블루 염료를 더욱 효과적으로 분해하는 광촉매로써 유용하다는 알 수 있었다.

As the use of chemical products increases in daily life, the removal of dye waste has also emerged as an important environmental issue. This dye waste can be decomposed using a photocatalyst, and the photocatalyst can be synthesized very cost-effectively by using the sol-gel technology. The sol-gel technology is not only very useful for nanoscale film formation, but also can simply form multilayer structures. Using a multiple spin coating method, in this study, a ZnO film with a multilayered structure (3 layers, 5 layers) was formed by using zinc oxide (ZnO), which is effective in decomposing various dyes. For performance comparison, a ZnO film having a single layer structure by a single spin coating method was prepared as a control. Structural and elemental analysis of ZnO film was performed using an X-ray diffraction analyzer and an energy dispersive X-ray spectrometer. A nanowire-like surface morphology could be observed through a scanning electron microscope. Additionally, UV-Vis spectrophotometer was used to measure the absorbance of UV light. The ZnO film with a five-layer structure degraded the simulated methylene blue by 49% more than the ZnO film with a single-layer structure. In conclusion, it was found that ZnO having a multilayered structure is useful as a photocatalyst that decomposes methylene blue dye more effectively.

키워드

과제정보

This research was supported by National University Development Project funded by the Ministry of Education(Korea) and National Research Foundation of Korea(2021).

참고문헌

  1. J. H. Mo, Y. H. Lee, J. Kim, J. Y. Jeong, and J. Jegal, "Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse", Dye. Pigment., Vol. 76, No. 2, pp. 429-434, (2008). https://doi.org/10.1016/j.dyepig.2006.09.007
  2. V. Vadivelan and K. Vasanth Kumar, "Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk", Journal Colloid Interface Sci., Vol. 286, No. 1, pp. 90-100, (2005). https://doi.org/10.1016/j.jcis.2005.01.007
  3. H. Lachheb et al., "Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania", Appl. Catal. B Environ., Vol. 39, No. 1, pp. 75-90, (2002). https://doi.org/10.1016/S0926-3373(02)00078-4
  4. H. Choi, M. G. Antoniou, A. A. de la Cruz, E. Stathatos, and D. D. Dionysiou, "Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems", Desalination, Vol. 202, No. 1-3, pp. 199-206, (2007). https://doi.org/10.1016/j.desal.2005.12.055
  5. L. G. J. De Haart, A. J. De Vries, and G. Blasse, "On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells", Journal Solid State Chem., Vol. 59, No. 3, pp. 291-300, (1985). https://doi.org/10.1016/0022-4596(85)90296-8
  6. T. Yasuda, K. Nishikawa, and S. Furukawa, "Structural colors from TiO2/SiO2 multilayer flakes prepared by sol-gel process", Dye. Pigment., Vol. 92, No. 3, pp. 1122-1125, (2012). https://doi.org/10.1016/j.dyepig.2011.08.006
  7. A. R. Hernandez-Martinez, M. Estevez, S. Vargas, F. Quintanilla, and R. Rodriguez, "Natural pigment-based dye-sensitized solar cells", Journal Appl. Res. Technol., Vol. 10, No. 1, pp. 38-47, (2012).
  8. A. A. Annenkov, M. V. Korzhik, and P. Lecoq, "Lead tungstate scintillation material", Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., Vol. 490, No. 1-2, pp. 30-50, (2002). https://doi.org/10.1016/S0168-9002(02)00916-6
  9. I. J. Kim, S. Do Han, H. D. Lee, J. S. Wang, I. Singh, and S. V. Kornilov, "Fabrication and characterization of humidity sensor based on (Li2MoO4)x (CaMoO4)1-x system", Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., Vol. 116, No. 2, pp. 226-230, (2005). https://doi.org/10.1016/j.mseb.2004.10.012
  10. C. A. K. Gouvea, F. Wypych, S. G. Moraes, N. Duran, N. Nagata, and P. Peralta-Zamora, "Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution", Chemosphere, Vol. 40, No. 4, pp. 433-440, (2000). https://doi.org/10.1016/S0045-6535(99)00313-6
  11. B. Dindar and S. Icli, "Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight", Journal Photochem. Photobiol. A Chem., Vol. 140, No. 3, pp. 263-268, (2001). https://doi.org/10.1016/s1010-6030(01)00414-2
  12. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, "Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2", Sol. Energy Mater. Sol. Cells, Vol. 77, No. 1, pp. 65-82, (2003). https://doi.org/10.1016/S0927-0248(02)00255-6
  13. A. A. Khodja, T. Sehili, J. F. Pilichowski, and P. Boule, "Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions", Journal Photochem. Photobiol. A Chem., Vol. 141, No. 2-3, pp. 231-239, (2001). https://doi.org/10.1016/S1010-6030(01)00423-3
  14. J. Wang et al., "Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation", Ultrason. Sonochem., Vol. 16, No. 2, pp. 225-231, (2009). https://doi.org/10.1016/j.ultsonch.2008.08.005
  15. C. Lizama, J. Freer, J. Baeza, and H. D. Mansilla, "Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions", Catal. Today, Vol. 76, No. 2-4, pp. 235-246, (2002). https://doi.org/10.1016/S0920-5861(02)00222-5
  16. J. Herrero and C. Guillen, "Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering", Thin Solid Films, Vol. 451-452, pp. 630-633, (2004). https://doi.org/10.1016/j.tsf.2003.11.050
  17. R. Hong, J. Shao, H. He, and Z. Fan, "Enhancement of near-band-edge photoluminescence of ZnO thin films in sandwich configuration at room temperature", Journal Appl. Phys., Vol. 99, No. 9, pp. 093520, (2006). https://doi.org/10.1063/1.2198934
  18. R. Suarez-Parra, I. Hernandez-Perez, M. E. Rincon, S. Lopez-Ayala, and M. C. Roldan-Ahumada, "Visible light-induced degradation of blue textile azo dye on TiO2/CdO-ZnO coupled nanoporous films", Sol. Energy Mater. Sol. Cells, Vol. 76, No. 2, pp. 189-199, (2003). https://doi.org/10.1016/S0927-0248(02)00346-X
  19. Y. Wang, X. Li, N. Wang, X. Quan, and Y. Chen, "Controllable synthesis of ZnO nanoflowers and their morphologydependent photocatalytic activities", Sep. Purif. Technol., Vol. 62, No. 3, pp. 727-732, (2008). https://doi.org/10.1016/j.seppur.2008.03.035
  20. M. Bouderbala et al., "Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films", Phys. B Condens. Matter, Vol. 403, No. 18, pp. 3326-3330, (2008). https://doi.org/10.1016/j.physb.2008.04.045
  21. M. Sharma and R. M. Mehra, "Effect of thickness on structural, electrical, optical and magnetic properties of Co and Al doped ZnO films deposited by sol-gel route", Appl. Surf. Sci., Vol. 255, No. 5, pp. 2527-2532, (2008). https://doi.org/10.1016/j.apsusc.2008.07.153
  22. M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, and A. Z. Moshfegh, "Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review", Res. Chem. Intermed., Vol. 45, No. 4, pp. 2197-2254, (2019). https://doi.org/10.1007/s11164-018-03729-5
  23. X. Sun, X. Qiu, P. Li, and G. Li, "ZnO twin-cones: Synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate", Inorg. Chem., Vol. 47, No. 10, pp. 4146-4152, (2008). https://doi.org/10.1021/ic702348c
  24. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, and K. Wei, "Ag/ZnO heterostructure nanocrystals: Synthesis, characterization, and photocatalysis", Inorg. Chem., Vol. 46, No. 17, pp. 6980-6986, (2007). https://doi.org/10.1021/ic700688f
  25. S. Payra, S. Challagulla, Y. Bobde, C. Chakraborty, B. Ghosh, and S. Roy, "Probing the photo- and electro-catalytic degradation mechanism of methylene blue dye over ZIF-derived ZnO", Journal Hazard. Mater., Vol. 373, pp. 377-388, (2019). https://doi.org/10.1016/j.jhazmat.2019.03.053