DOI QR코드

DOI QR Code

Closed-form Expressions of Magnetic Field and Magnetic Gradient Tensor due to a Circular Disk

원판형 이상체에 의한 자력 및 자력 변화율 텐서 반응식

  • Rim, Hyoungrea (Department of Earth Science Education, Pusan National University)
  • 임형래 (부산대학교 지구과학교육과)
  • Received : 2022.01.24
  • Accepted : 2022.02.24
  • Published : 2022.02.28

Abstract

In case axial symmetrical bodies with varying cross sections such as volcanic conduits and unexploded ordnance (UXO), it is efficient to approximate them by adding the response of thin disks perpendicular to the axis of symmetry. To compute the vector magnetic and magnetic gradient tensor respones by such bodies, it is necessary to derive an analytical expression of the circular disk. Therefore, in this study, we drive closed-form expressions of the vector magnetic and magnetic gradient tensor due to a circular disk. First, the vector magnetic field is obtained from the existing gravity gradient tensor using Poisson's relation where the gravity gradient tensor due to the same disk with a constant density can be transformed into a magnetic field. Then, the magnetic gradient tensor is derived by differentiating the vector magnetic field with respect to the cylindrical coordinates converted from the Cartesian coordinate system. Finally, both the vector magnetic and magnetic gradient tensors are derived using Lipschitz-Hankel type integrals based on the axial symmetry of the circular disk.

화산의 화도나 불발탄과 같이 축 대칭을 갖지만 단면의 반지름이 변하는 경우 대칭축에 수직인 얇은 원판들의 반응을 더하여 모델링하는 것이 효율적이다. 이런 모양의 이상체에 대한 자력 및 자력 변화율 텐서 모델링을 위해서는 얇은 원판에 대한 해석해가 필수적이다. 따라서 이 논문에서는 원판형 이상체에 대한 벡터 자력과 자력 변화율 텐서 반응식을 유도하였다. 벡터 자력은 중력 변화율 텐서를 자력으로 변환하는 포아송 관계식을 이용하여 원판형 이상체의 기존 중력 변화율 텐서로부터 유도하였다. 자력 변화율 텐서는 직교 좌표계의 미분 관계식을 원통 좌표계로 미분 관계식으로 변환한 후 벡터 자력을 미분하여 유도하였다. 벡터 자력과 자력 변화율 텐서는 원판형 이상체의 축 대칭성을 이용한 립쉬츠-한켈(Lipschitz-Hankel) 적분을 기반으로 구하였다.

Keywords

Acknowledgement

논문에 대한 상세한 의견을 제시하여 완성도를 높여 주신 익명의 심사위원께 감사드립니다. 이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2019R1F1A1055093).

References

  1. Arfken, G. B., Weber, H. J., and Harris, F. E., 2012, Mathematical methods for physicists 7th ed., Elsevier.
  2. Beiki, M., Clark, D. A., Austin, J. R., and Foss, C. A., 2012, Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data, Geophysics, 77(6), J23-J37, doi: 10.1190/geo2011-0437.1.
  3. Blakely, R. J., 1996, Potential Theory in gravity and magnetic applications, Cambridge University Press.
  4. Byrd, P. F., and Friedman, M. D., 1971, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, doi: 10.1007/978-3-642-65138-0.
  5. Carlson, B. C., 1995, Numerical computation of real and complex elliptic integrals, Numer. Algorithms, 10, 13-26, doi: 10.1007/BF02198293.
  6. Carlson, B. C., and Notis, E. M., 1981, Algorithm 577: Algorithm for incomplete elliptic integrals, AMC Trans. Math. Softw., 7(3), 389-403, doi: 10.1145/355958.355970.
  7. Davis, K., Li, Y., and Nabighian, M., 2010, Automatic detection of UXO magnetic anomalies using extended Euler deconvolution, Geophysics, 75(3), G13-G20, doi: 10.1190/1.3375235.
  8. Eason, G., Noble, B., and Sneddon, I. N., 1955, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Philos. Trans. R. Soc. A, Mathematical and Physical Sciences, 247(935), 529-551, doi: 10.1098/rsta.1955.0005.
  9. Heath, P. J., Greenhalgh, S., and Direen, N. G., 2005, Modelling gravity and magnetic gradient tensor responses for exploration within the regolith, Explor. Geophys., 36(4), 357-364, doi: 10.1071/EG05357.
  10. Luo, Y., Wu, M., Wang, P., Duan, S., Liu, H., Wang, J., and An, Z., 2015, Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: calculation and application, Applied Geophysics, 12(3), 283-291, doi: 10.1007/s11770-015-0508-y.
  11. Munschy, M., Boulanger, D., Ulrich, P., and Bouiflane, M., 2007, Magnetic mapping for the detection and characterization of UXO: Use of multi-sensor fluxgate 3-axis magnetometers and methods of interpretation, Journal of Applied Geophysics, 61(3-4), 168-183, doi: 10.1016/j.jappgeo.2006.06.004.
  12. Nettleton, L. L., 1942, Gravity and magnetic calculations, Geophysics, 7(3), 293-310, doi: 10.1190/1.1445015.
  13. Noh, M., Lee, S., Lee, H., and Ahn, T., 2020, A development of fluxgate sensor-based drone magnetic exploration system, Geophys. and Geophys. Explor., 23(3), 208-214, doi: 10.7582/GGE.2020.23.3.00208. (in Korean with English abstract)
  14. Oruc, B., 2010, Location and depth estimation of point-dipole and line of dipoles using analytic signals of the magnetic gradient tensor and magnitude of vector components, Journal of Applied Geophysics, 70(1), 27-37, doi: 10.1016/j.jappgeo.2009.10.002.
  15. Park, G., Lee, B., Kim, I., and Heo, C., 2014, A study on the characteristics of W-Mo ore deposit in Bayan-Onjuul, Mongolia using magnetic data, Geophys. and Geophys. Explor., 17(4), 202-208, doi: 10.7582/GGE.2014.17.4.202. (in Korean with English abstract)
  16. Ren, Z., Chen, H., Chen, C., Zhong, Y., and Tang, J., 2019, New analytical expression of the magnetic gradient tensor for homogeneous polyhedrons, Geophysics, 84(3), A31-A35, doi: 10.1190/geo2016-0470.1.
  17. Rim, H., 2020, The closed-form expressions of magnetic gradient tensor due to a circular cylinder, Geophys. and Geophys. Explor., 23(2), 67-71, doi: 10.7582/GGE.2020.23.2.067. (in Korean with English abstract)
  18. Rim, H., and Eom, J., 2020, The closed-form expressions of magnetic field due to a right cylinder, Geophys. and Geophys. Explor., 23(1), 50-54, doi: 10.7582/GGE.2020.23.2.050. (in Korean with English abstract)
  19. Rim, H., 2021, Closed-form expressions of the vector gravity and gravity gradient tensor due to a circular disk, Geophys. and Geophys. Explor., 24(1), 1-5, doi: 10.7582/GGE.2021.24.1.1. (in Korean with English abstract)
  20. Salamon, N. J., and Dundurs, J., 1971, Elastic fields of a dislocation loop in a two-phase material, J. Elasticity, 1, 153-164, doi: 10.1007/BF00046466.
  21. Sarma, B. S. P., Verma, B. K., and Satyanarayana, S. V., 1999, Magnetic mapping of Majhgawan diamond pipe of central India, Geophysics, 64(6), 1735-1739, doi: 10.1190/1.1444678.
  22. Schmidt, P., Clark, D., Leslie, K., Bick, M., Tilbrook, D., and Foley, C., 2004, GETMAG - a SQUID magnetic tensor gradiometer for mineral and oil exploration, Explor. Geophys., 35(4), 297-305, doi: 10.1071/EG04297.
  23. Singh, S. K., Castro, R., and Guzman, M., 1979, Magnetic anomaly of a circular lamina, Geophysics, 44(1), 102-107, doi: 10.1190/1.1440919.
  24. Szitkar, F., Petersen, S., Tontini, C. F., and Cocchi, L., 2015, High-resolution magnetics reveal the deep structure of a volcanic-arc-related basalt-hosted hydrothermal site (Palinuro, Tyrrhenian Sea), Geochem. Geophys. Geosyst., 16(6), 1525-2027, doi: 10.1002/2015GC005769.
  25. Talwani, M., 1973. Computer usage in the computation of gravity anomalies, Methods in Computational Physics: Advances in Research and Applications, 13, 343-389, doi: 10.1016/B978-0-12-460813-9.50014-X.
  26. Yin, G., Zhang. Y., Li, Z., Fan, H., and Ren, G., 2016, Detection of ferromagnetic target based on mobile magnetic gradient tensor system, J. Magn. Magn. Mater., 402, 1-7, doi: 10.1016/j.jmmm.2015.11.034.