DOI QR코드

DOI QR Code

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃

  • Received : 2021.10.06
  • Accepted : 2022.01.06
  • Published : 2022.02.28

Abstract

Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.

Keywords

Acknowledgement

This work was supported by 2021 Chasedae Sundo Kisul Gaebal Saup supported by Daegu Technopark.

References

  1. S. O. Kim, J. K. Hwang, and S. J. Kim, Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution, Corrosion Science and Technology, 18, 300 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.300
  2. S. H. Kim, J. Y. Huh, M. S. Kim, and J. S. Kim, Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme, Corrosion Science and Technology, 16, 15 (2017). Doi: https://doi.org/10.14773/cst.2017.16.1.15
  3. O. Bouaziz, S. Allain, C. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Current Opinion in Solid State and Materials Science, 15, 141 (2011). Doi: https://doi.org/10.1016/j.cossms.2011.04.002
  4. S. W. Park, J. Y. Park, K. M. Cho, J. H. Jang, S. J. Park, J. Moon, T. H. Lee, and J. H. Shin, Effect of Mn and C on Age Hardening of Fe-Mn-Al-C Lightweight Steels, Metals and Materials International, 25, 683 (2019). Doi: https://doi.org/10.1007/s12540-018-00230-x
  5. J. Moon, S. J. Park, and C. H. Lee, Current Status on Development of Lightweight Steels and Welding Characteristics, Journal of Welding and Joining, 38, 333 (2020). Doi: https://doi.org/10.5781/JWJ.2020.38.4.1
  6. P. R. S. Jackson and G. R. Wallwork, High Temperature Oxidation of Iron-Manganese-Aluminum Based Alloys, Oxidation of Metals, 21, 135 (1984). Doi: https://doi.org/10.1007/bf00741468
  7. C. J. Wang and Y. C. Chang, Formation and Growth Morphology of Nodules in the High-Temperature Oxidation of Fe-Mn-Al-C Alloy, Materials Chemistry and Physics, 77, 738 (2003). Doi: https://doi.org/10.1016/S0254-0584(02)00134-7
  8. J. G. Duh and C. J. Wang, Formation and Growth Morphology of Oxidation-induced Ferrite Layer in Fe-MnAl-Cr-C Alloys, Journal of Materials Science, 25, 2063 (1990). Doi: https://doi.org/10.1007/BF01045765
  9. J. G. Duh and C. J. Wang, High Temperature Oxidation of Fe-31 Mn-9Al-xCr-0.87C Alloys (x = 0, 3 and 6), Journal of Materials Science, 25, 268 (1990). Doi: https://doi.org/10.1007/BF00544219
  10. J. P. Sauer, R. A. Rapp, and J. P. Hirth, Oxidation of Iron-Manganese-Aluminum Alloys at 850 and 1000 ℃, Oxidation of Metals, 18, 285 (1982). Doi: https://doi.org/10.1007/BF00656572
  11. P. Perez, F. J. Perez, C. Gomez, and P. Adevaa, Oxidation Behaviour of an Austenitic Fe-30Mn-5Al-0.5C Alloy, Corrosion Science, 44, 113 (2002). Doi: https://doi.org/10.1016/S0010-938X(01)00043-9
  12. H. Buscail and J. P. Larpin, The Influence of Ceria Surface Additions on Manganese Oxidation at High Temperatures, Oxidation of Metals, 43, 237 (1995). Doi: https://doi.org/10.1007/BF01047029
  13. E. B. Evans, C. A. Phalnikar, and W. M. Baldwin, High Temperature Scaling of Nickel-Manganese Alloys, Journal of the Electrochemical Society, 103, 367 (1956). Doi: https://doi.org/10.1149/1.2430358
  14. F. Gesmundo, C. de Asmundis, and C. Bottino, High-Temperature Corrosion of Manganese in Pure SO2, Oxidation of Metals, 14, 15 (1980). Doi: https://doi.org/10.1007/BF00604101
  15. V. D. F. C. Lins, M. A. Freitas, and E. M. D. P. e Silva, Oxidation Kinetics of an Fe-31.8Mn-6.09Al-1.60Si0.40C Alloys at Temperature from 600 to 900℃, Corrosion Science, 46, 1895 (2004). Doi: http://doi.org/10.1016/j.corsci.2003.10.015
  16. J. G. Duh, J. W. Lee, and C. J. Wang, Microstructural Development in the Oxidation-induced Phase Transformation of Fe-Al-Cr-Mn-C Alloys, Journal of Materials Science, 23, 2649 (1988). Doi: https://doi.org/10.1007/BF01111928
  17. F. Gesmundo, P. Nanni, and D. P. Whittle, High Temperature Oxidation of Co-Mn Alloys, Corrosion Science, 19, 675 (1979). Doi: https://doi.org/10.1016/S0010-938X(79)80140-7
  18. N. Bertrand, C. Desgranges, D. Poquillon, M. C. Lafont, and D. Monceau, Iron Oxidation at Low Temperature (260-500 ℃) in Air and the Effect of Water Vapor, Oxidation of Metals, 73, 139 (2010). Doi: https://doi.org/10.1007/s11085-009-9171-0
  19. N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, p.72, Edward Arnold, London (1983). Doi: https://doi.org/10.1017/CBO9781139163903
  20. L. Kjellqvist and M. Selleby, Thermodynamic Assessment of the Fe-Mn-O System, Journal of Phase Equilibria and Diffusion, 31, 113 (2010). Doi: https://doi.org/10.1007/s11669-009-9643-6
  21. K. Fueki and J. B. Wagner, Oxidation of Manganese in CO2-CO Mixtures, Journal of The Electrochemical Society, 112, 970 (1965). Doi: https://doi.org/10.1149/1.2423353
  22. I. Barin, Thermochemical Data of Pure Substances, 3rd ed., VCH, Germany (1989). Doi: https://doi.org/10.1002/9783527619825
  23. F. H. Stott, F. I. Wei, and C. A. Enahoro, The Influence of Manganese on the High-Temperature Oxidation of Iron-chromium Alloys, Materials and Corrosion, 40, 198 (1989). Doi: https://doi.org/10.1002/maco.19890400403
  24. A. Muan and S. Somiya, The System Iron Oxide-Manganese Oxide in Air, American Journal of Science, 260, 230 (1962). Doi: https://doi.org/10.2475/ajs.260.3.230