DOI QR코드

DOI QR Code

Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine

  • Cheol Ju, Kim (Department of Korean Medicine, School of Korean Medicine, Pusan National University) ;
  • Tae Young, Kwak (Department of Korean Medicine, School of Korean Medicine, Pusan National University) ;
  • Min Hyeok, Bae (Department of Korean Medicine, School of Korean Medicine, Pusan National University) ;
  • Hwa Kyoung, Shin (Department of Korean Medicine, School of Korean Medicine, Pusan National University) ;
  • Byung Tae, Choi (Department of Korean Medicine, School of Korean Medicine, Pusan National University)
  • Received : 2022.08.26
  • Accepted : 2022.09.06
  • Published : 2022.12.30

Abstract

Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459-80. https://doi.org/10.1016/S1474-4422(18)30499-X
  2. Pares-Badell O, Barbaglia G, Jerinic P, Gustavsson A, Salvador-Carulla L, Alonso J. Cost of disorders of the brain in Spain. PLoS One. 2014;9(8):e105471.
  3. Park CH, Kim KH, Lee IK, Lee SY, Choi SU, Lee JH, et al. Phenolic constituents of Acorus gramineus. Arch Pharm Res. 2011;34(8):1289-96. https://doi.org/10.1007/s12272-011-0808-6
  4. Balakrishnan R, Cho DY, Kim IS, Seol SH, Choi DK. Molecular mechanisms and therapeutic potential of α- and β-asarone in the treatment of neurological disorders. Antioxidants (Basel). 2022;11(2):281.
  5. Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl. 2009;48(17):3030-59. https://doi.org/10.1002/anie.200802808
  6. Kim SY. Past and future of drug treatments for Alzheimer's disease. J Korean Neuropsychiatr Assoc. 2018;57(1):30-42. https://doi.org/10.4306/jknpa.2018.57.1.30
  7. Chen XY, Liao DC, Sun ML, Cui XH, Wang HB. Essential oil of Acorus tatarinowii schott ameliorates Aβ-induced toxicity in Caenorhabditis elegans through an autophagy pathway. Oxid Med Cell Longev. 2020;2020:3515609.
  8. Deng M, Huang L, Zhong X. β-asarone modulates Beclin-1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease. Mol Med Rep. 2020;21(5):2095-102.
  9. Deng M, Huang L, Ning B, Wang N, Zhang Q, Zhu C, et al. β-asarone improves learning and memory and reduces Acetyl Cholinesterase and Beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy. Brain Res. 2016;1652:188-94. https://doi.org/10.1016/j.brainres.2016.10.008
  10. Wei G, Chen YB, Chen DF, Lai XP, Liu DH, Deng RD, et al. β-Asarone inhibits neuronal apoptosis via the CaMKII/CREB/Bcl-2 signaling pathway in an in vitro model and AβPP/PS1 mice. J Alzheimers Dis. 2013;33(3):863-80. https://doi.org/10.3233/JAD-2012-120865
  11. Liang ZH, Cheng XH, Ruan ZG, Wang H, Li SS, Liu J, et al. Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC12 cells incubated with amyloid-beta42. Neural Regen Res. 2015;10(8):1292-7. https://doi.org/10.4103/1673-5374.162762
  12. Li C, Xing G, Dong M, Zhou L, Li J, Wang G, et al. Beta-asarone protection against beta-amyloid-induced neurotoxicity in PC12 cells via JNK signaling and modulation of Bcl-2 family proteins. Eur J Pharmacol. 2010;635(1-3):96-102. https://doi.org/10.1016/j.ejphar.2010.03.013
  13. Geng Y, Li C, Liu J, Xing G, Zhou L, Dong M, et al. Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biol Pharm Bull. 2010;33(5):836-43. https://doi.org/10.1248/bpb.33.836
  14. Liu J, Li C, Xing G, Zhou L, Dong M, Geng Y, et al. Beta-asarone attenuates neuronal apoptosis induced by Beta amyloid in rat hippocampus. Yakugaku Zasshi. 2010;130(5):737-46. https://doi.org/10.1248/yakushi.130.737
  15. Wang N, Wang H, Li L, Li Y, Zhang R. β-asarone inhibits amyloid-β by promoting autophagy in a cell model of Alzheimer's disease. Front Pharmacol. 2020;10:1529.
  16. Wang N, Wang H, Pan Q, Kang J, Liang Z, Zhang R. The combination of β-asarone and icariin inhibits amyloid-β and reverses cognitive deficits by promoting mitophagy in models of Alzheimer's disease. Oxid Med Cell Longev. 2021;2021:7158444.
  17. Chen Y, Wei G, Nie H, Lin Y, Tian H, Liu Y, et al. β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res. 2014;1552:41-54. https://doi.org/10.1016/j.brainres.2014.01.005
  18. Xue Z, Guo Y, Zhang S, Huang L, He Y, Fang R, et al. Beta-asarone attenuates amyloid beta-induced autophagy via Akt/mTOR pathway in PC12 cells. Eur J Pharmacol. 2014;741:195-204. https://doi.org/10.1016/j.ejphar.2014.08.006
  19. Chang W, Teng J. β-asarone prevents Aβ25-35-induced inflammatory responses and autophagy in SH-SY5Y cells: down expression Beclin-1, LC3B and up expression Bcl-2. Int J Clin Exp Med. 2015;8(11):20658-63.
  20. Yang Y, Xuan L, Chen H, Dai S, Ji L, Bao Y, et al. Neuroprotective effects and mechanism of β-asarone against Aβ1-42-induced injury in astrocytes. Evid Based Complement Alternat Med. 2017;2017:8516518.
  21. Cai Q, Li Y, Mao J, Pei G. Neurogenesis-promoting natural product α-asarone modulates morphological dynamics of activated microglia. Front Cell Neurosci. 2016;10:280.
  22. Limon ID, Mendieta L, Diaz A, Chamorro G, Espinosa B, Zenteno E, et al. Neuroprotective effect of alpha-asarone on spatial memory and nitric oxide levels in rats injected with amyloidbeta((25-35)). Neurosci Lett. 2009;453(2):98-103. https://doi.org/10.1016/j.neulet.2009.02.011
  23. Saki G, Eidi A, Mortazavi P, Panahi N, Vahdati A. Effect of β-asarone in normal and β-amyloid-induced Alzheimeric rats. Arch Med Sci. 2020;16(3):699-706. https://doi.org/10.5114/aoms.2020.94659
  24. Meng M, Zhang L, Ai D, Wu H, Peng W. β-asarone ameliorates β-amyloid-induced neurotoxicity in PC12 cells by activating P13K/Akt/Nrf2 signaling pathway. Front Pharmacol. 2021;12:659955.
  25. Kumar P, Deshmukh R, Bariwal J, Shree P. β-asarone restores hippocampal neurochemistry and improve cognitive functions in Aβ (1-42) infused rats. Alzheimer's Dement. 2019;15(7):P1292.
  26. Liu SJ, Yang C, Zhang Y, Su RY, Chen JL, Jiao MM, et al. Neuroprotective effect of β-asarone against Alzheimer's disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. Drug Des Devel Ther. 2016;10:1461-9.
  27. Chen Y, Gao X, Liu Q, Zeng L, Zhang K, Mu K, et al. Alpha-asarone improves cognitive function of aged rats by alleviating neuronal excitotoxicity via GABAA receptors. Neuropharmacology. 2020;162:107843.
  28. Cho J, Kim YH, Kong JY, Yang CH, Park CG. Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci. 2002;71(5):591-9. https://doi.org/10.1016/S0024-3205(02)01729-0
  29. Dong H, Wu S, Hu N, Xing G. Efficacy of tenuigenin and β-asarone as augmentations for memantine in the treatment of Alzheimer's disease. Neuroreport. 2018;29(3):203-7. https://doi.org/10.1097/WNR.0000000000000952
  30. Chang W, Teng J. Combined application of tenuigenin and β-asarone improved the efficacy of memantine in treating moderate-to-severe Alzheimer's disease. Drug Des Devel Ther. 2018;12:455-62. https://doi.org/10.2147/DDDT.S155567
  31. Li Z, Zhao G, Qian S, Yang Z, Chen X, Chen J, et al. Cerebrovascular protection of β-asarone in Alzheimer's disease rats: a behavioral, cerebral blood flow, biochemical and genic study. J Ethnopharmacol. 2012;144(2):305-12. https://doi.org/10.1016/j.jep.2012.09.013
  32. Ma Y, Tian S, Sun L, Yao S, Liang Z, Li S, et al. The effect of acori graminei rhizoma and extract fractions on spatial memory and hippocampal neurogenesis in amyloid beta 1-42 injected mice. CNS Neurol Disord Drug Targets. 2015;14(3):411-20. https://doi.org/10.2174/1871527314666150225124348
  33. Mao J, Huang S, Liu S, Feng XL, Yu M, Liu J, et al. A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation. Aging Cell. 2015;14(5):784-96. https://doi.org/10.1111/acel.12356
  34. Lam KYC, Wu QY, Hu WH, Yao P, Wang HY, Dong TTX, et al. Asarones from Acori Tatarinowii Rhizoma stimulate expression and secretion of neurotrophic factors in cultured astrocytes. Neurosci Lett. 2019;707:134308.
  35. Gao N, Liu H, Li S, Tu X, Tian S, Liu J, et al. Volatile oil from acorus gramineus ameliorates the injury neurons in the hippocampus of amyloid beta 1-42 injected mice. Anat Rec (Hoboken). 2019;302(12):2261-70. https://doi.org/10.1002/ar.24236
  36. Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021;397(10291):2284-303. https://doi.org/10.1016/S0140-6736(21)00218-X
  37. Zhang S, Gui XH, Huang LP, Deng MZ, Fang RM, Ke XH, et al. Neuroprotective effects of β-asarone against 6-hydroxy dopamine-induced Parkinsonism via JNK/Bcl-2/Beclin-1 pathway. Mol Neurobiol. 2016;53(1):83-94. https://doi.org/10.1007/s12035-014-8950-z
  38. Zhang QS, Wang ZH, Zhang JL, Duan YL, Li GF, Zheng DL. Beta-asarone protects against MPTP-induced Parkinson's disease via regulating long non-coding RNA MALAT1 and inhibiting α-synuclein protein expression. Biomed Pharmacother. 2016;83:153-9. https://doi.org/10.1016/j.biopha.2016.06.017
  39. Kim BW, Koppula S, Kumar H, Park JY, Kim IW, More SV, et al. α-Asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTPinduced behavioral deficits in a mouse model of Parkinson's disease. Neuropharmacology. 2015;97:46-57. https://doi.org/10.1016/j.neuropharm.2015.04.037
  40. Ning B, Zhang Q, Wang N, Deng M, Fang Y. β-asarone regulates ER stress and autophagy via inhibition of the PERK/CHOP/Bcl-2/Beclin-1 pathway in 6-OHDA-induced parkinsonian rats. Neurochem Res. 2019;44(5):1159-66. https://doi.org/10.1007/s11064-019-02757-w
  41. Ning B, Deng M, Zhang Q, Wang N, Fang Y. β-asarone inhibits IRE1/XBP1 endoplasmic reticulum stress pathway in 6-OHDA-induced parkinsonian rats. Neurochem Res. 2016;41(8):2097-101. https://doi.org/10.1007/s11064-016-1922-0
  42. Huang L, Deng M, He Y, Lu S, Liu S, Fang Y. β-asarone increases MEF2D and TH levels and reduces α-synuclein level in 6-OHDA-induced rats via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway: chaperone-mediated autophagy activation, macroautophagy inhibition and HSP70 up-expression. Behav Brain Res. 2016;313:370-9. https://doi.org/10.1016/j.bbr.2016.07.028
  43. Jiang J, Kim JJ, Kim DY, Kim MK, Oh NH, Koppula S, et al. Acorus gramineus inhibits microglia mediated neuroinflammation and prevents neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease. J Ethnopharmacol. 2012;144(3):506-13. https://doi.org/10.1016/j.jep.2012.09.026
  44. Liu H, Ren M, Wang H, Zhang M, Xiong J. Effect and mechanism of beta asarone from Acorus tatarinowii Schott on neuron injury in rats with Parkinson's disease. Indian J Pharm Sci. 2021;84(2):400-6.
  45. Huang L, Deng M, Zhang S, Fang Y, Li L. Coadministration of β-asarone and levodopa increases dopamine in rat brain by accelerating transformation of levodopa: a different mechanism from Madopar. Clin Exp Pharmacol Physiol. 2014;41(9):685-90. https://doi.org/10.1111/1440-1681.12270
  46. Huang L, Deng M, Zhang S, Lu S, Gui X, Fang Y. β-asarone and levodopa coadministration increases striatal levels of dopamine and levodopa and improves behavioral competence in Parkinson's rat by enhancing dopa decarboxylase activity. Biomed Pharmacother. 2017;94:666-78. https://doi.org/10.1016/j.biopha.2017.07.125
  47. Huang L, Deng M, He Y, Lu S, Ma R, Fang Y. β-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating P-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain. Clin Exp Pharmacol Physiol. 2016;43(6):634-43. https://doi.org/10.1111/1440-1681.12570
  48. Huang LP, Deng MZ, He YP, Fang YQ. β-asarone and levodopa co-administration protects against 6-hydroxydopamine-induced damage in parkinsonian rat mesencephalon by regulating autophagy: down-expression Beclin-1 and light chain 3B and up-expression P62. Clin Exp Pharmacol Physiol. 2015;42(3):269-77. https://doi.org/10.1111/1440-1681.12344
  49. Willner P, Scheel-Kruger J, Belzung C. The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev. 2013;37(10 Pt 1):2331-71. https://doi.org/10.1016/j.neubiorev.2012.12.007
  50. Dong H, Gao Z, Rong H, Jin M, Zhang X. β-asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules. 2014;19(5):5634-49. https://doi.org/10.3390/molecules19055634
  51. Dong H, Cong W, Guo X, Wang Y, Tong S, Li Q, et al. β-asarone relieves chronic unpredictable mild stress induced depression by regulating the extracellular signal-regulated kinase signaling pathway. Exp Ther Med. 2019;18(5):3767-74.
  52. Sun YR, Wang XY, Li SS, Dong HY, Zhang XJ. β-asarone from Acorus gramineus alleviates depression by modulating MKP-1. Genet Mol Res. 2015;14(2):4495-504. https://doi.org/10.4238/2015.May.4.7
  53. Chellian R, Pandy V, Mohamed Z. Alpha-asarone attenuates depression-like behavior in nicotine-withdrawn mice: evidence for the modulation of hippocampal pCREB levels during nicotine-withdrawal. Eur J Pharmacol. 2018;818:10-6. https://doi.org/10.1016/j.ejphar.2017.10.025
  54. Han P, Han T, Peng W, Wang XR. Antidepressant-like effects of essential oil and asarone, a major essential oil component from the rhizome of Acorus tatarinowii. Pharm Biol. 2013;51(5):589-94. https://doi.org/10.3109/13880209.2012.751616
  55. Chellian R, Pandy V, Mohamed Z. Biphasic effects of α-asarone on immobility in the tail suspension test: evidence for the involvement of the noradrenergic and serotonergic systems in its antidepressant-like activity. Front Pharmacol. 2016;7:72.
  56. Liu S, Chen SW, Xu N, Liu XH, Zhang H, Wang YZ, et al. Anxiolytic-like effect of α-asarone in mice. Phytother Res. 2012;26(10):1476-81. https://doi.org/10.1002/ptr.4596
  57. Radhakrishnan A, Jayakumari N, Kumar VM, Gulia KK. α-Asarone in management of sleep deprivation induced memory deficits and anxiety in rat model. Sleep Biol Rhythms. 2019;17(1):37-47. https://doi.org/10.1007/s41105-018-0181-7
  58. Tian J, Tian Z, Qin SL, Zhao PY, Jiang X, Tian Z. Anxiolytic-like effects of α-asarone in a mouse model of chronic pain. Metab Brain Dis. 2017;32(6):2119-29. https://doi.org/10.1007/s11011-017-0108-z
  59. Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. Alpha-asarone, a major component of acorus gramineus, attenuates corticosterone-induced anxiety-like behaviours via modulating TrkB signaling process. Korean J Physiol Pharmacol. 2014;18(3):191-200. https://doi.org/10.4196/kjpp.2014.18.3.191
  60. Chang BS, Lowenstein DH. Epilepsy. N Engl J Med. 2003;349(13):1257-66. https://doi.org/10.1056/NEJMra022308
  61. Miao JK, Chen QX, Wu XM, Li C, Zhang XP. Antiepileptic properties of alpha-asarone from acori graminei rhizoma in mice and rats seizure models. Int J Pharmacol. 2012;8(6):567-71. https://doi.org/10.3923/ijp.2012.567.571
  62. Chen QX, Miao JK, Li C, Li XW, Wu XM, Zhang XP. Anticonvulsant activity of acute and chronic treatment with a-asarone from Acorus gramineus in seizure models. Biol Pharm Bull. 2013;36(1):23-30. https://doi.org/10.1248/bpb.b12-00376
  63. Liao WP, Chen L, Yi YH, Sun WW, Gao MM, Su T, et al. Study of antiepileptic effect of extracts from Acorus tatarinowii Schott. Epilepsia. 2005;46 Suppl 1:21-4.
  64. Liao JF, Huang SY, Jan YM, Yu LL, Chen CF. Central inhibitory effects of water extract of Acori graminei rhizoma in mice. J Ethnopharmacol. 1998;61(3):185-93. https://doi.org/10.1016/S0378-8741(98)00042-7
  65. Koo BS, Park KS, Ha JH, Park JH, Lim JC, Lee DU. Inhibitory effects of the fragrance inhalation of essential oil from Acorus gramineus on central nervous system. Biol Pharm Bull. 2003;26(7):978-82. https://doi.org/10.1248/bpb.26.978
  66. Cho J, Kong JY, Jeong DY, Lee KD, Lee DU, Kang BS. NMDA recepter-mediated neuroprotection by essential oils from the rhizomes of Acorus gramineus. Life Sci. 2001;68(13):1567-73. https://doi.org/10.1016/s0024-3205(01)00944-4
  67. Huang C, Li WG, Zhang XB, Wang L, Xu TL, Wu D, et al. α-asarone from Acorus gramineus alleviates epilepsy by modulating A-type GABA receptors. Neuropharmacology. 2013;65:1-11. https://doi.org/10.1016/j.neuropharm.2012.09.001
  68. Chellian R, Pandy V. Protective effect of α-asarone against nicotine-induced seizures in mice, but not by its interaction with nicotinic acetylcholine receptors. Biomed Pharmacother. 2018;108:1591-5. https://doi.org/10.1016/j.biopha.2018.09.137
  69. Miao JK, Chen QX, Li C, Li XW, Wu XM, Zhang X. Modulation effects of α-asarone on the GABA homeostasis in the lithium-pilocarpine model of temporal lobe epilepsy. Int J Pharmacol. 2013;9(1):24-32. https://doi.org/10.3923/ijp.2013.24.32
  70. Wang ZJ, Levinson SR, Sun L, Heinbockel T. Identification of both GABAA receptors and voltage-activated Na(+) channels as molecular targets of anticonvulsant α-asarone. Front Pharmacol. 2014;5:40.
  71. Pages N, Maurois P, Delplanque B, Bac P, Stables JP, Tamariz J, et al. Activities of α-asarone in various animal seizure models and in biochemical assays might be essentially accounted for by antioxidant properties. Neurosci Res. 2010;68(4):337-44. https://doi.org/10.1016/j.neures.2010.08.011
  72. Liu HJ, Lai X, Xu Y, Miao JK, Li C, Liu JY, et al. α-Asarone attenuates cognitive deficit in a pilocarpine-induced status epilepticus rat model via a decrease in the nuclear factor-κB activation and reduction in microglia neuroinflammation. Front Neurol. 2017;8:661.
  73. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612-23. https://doi.org/10.1016/S0140-6736(08)60694-7
  74. Mo ZT, Fang YQ, He YP, Zhang S. β-Asarone protects PC12 cells against OGD/R-induced injury via attenuating Beclin-1-dependent autophagy. Acta Pharmacol Sin. 2012;33(6):737-42. https://doi.org/10.1038/aps.2012.35
  75. Liu L, Fang YQ, Xue ZF, He YP, Fang RM, Li L. Beta-asarone attenuates ischemia-reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin 1. Eur J Pharmacol. 2012;680(1-3):34-40. https://doi.org/10.1016/j.ejphar.2012.01.016
  76. Zhang K, Liu Q, Luo L, Feng X, Hu Q, Fan X, et al. Neuroprotective effect of alpha-asarone on the rats model of cerebral ischemia-reperfusion stroke via ameliorating glial activation and autophagy. Neuroscience. 2021;473:130-41. https://doi.org/10.1016/j.neuroscience.2021.08.006
  77. Yang F, Duan H, Ye N, Zeng Y, Yang P, Shao B, et al. β-Asarone protects PC12 cells against hypoxia-induced injury via negatively regulating RPPH1/MiR-542-3p/DEDD2 axis. Cell Transplant. 2022;31:9636897221079336.
  78. Kim YO, Kwon YS, Lee SE, Lee SW, Lee HJ. Effects of α-asarone against global cerebral ischemia in rats. Nat Prod Sci. 2009;15(4):198-202.
  79. Pan H, Xu Y, Cai Q, Wu M, Ding M. Effects of β-asarone on ischemic stroke in middle cerebral artery occlusion rats by an Nrf2-antioxidant response elements (ARE) pathway-dependent mechanism. Med Sci Monit. 2021;27:e931884.
  80. Yang YX, Chen YT, Zhou XJ, Hong CL, Li CY, Guo JY. Beta-asarone, a major component of Acorus tatarinowii Schott, attenuates focal cerebral ischemia induced by middle cerebral artery occlusion in rats. BMC Complement Altern Med. 2013;13:236.
  81. Lim HW, Kumar H, Kim BW, More SV, Kim IW, Park JI, et al. β-Asarone (cis-2,4,5-trimethoxy-1-allyl phenyl), attenuates proinflammatory mediators by inhibiting NF-κB signaling and the JNK pathway in LPS activated BV-2 microglia cells. Food Chem Toxicol. 2014;72:265-72. https://doi.org/10.1016/j.fct.2014.07.018
  82. Lee YC, Kao ST, Cheng CY. Acorus tatarinowii Schott extract reduces cerebral edema caused by ischemia-reperfusion injury in rats: involvement in regulation of astrocytic NKCC1/AQP4 and JNK/iNOS-mediated signaling. BMC Complement Med Ther. 2020;20(1):374.
  83. Lee HJ, Ahn SM, Pak ME, Jung DH, Lee SY, Shin HK, et al. Positive effects of α-asarone on transplanted neural progenitor cells in a murine model of ischemic stroke. Phytomedicine. 2018;51:151-61. https://doi.org/10.1016/j.phymed.2018.09.230
  84. Dang H, Sun L, Liu X, Peng B, Wang Q, Jia W, et al. Preventive action of Kai Xin San aqueous extract on depressive-like symptoms and cognition deficit induced by chronic mild stress. Exp Biol Med (Maywood). 2009;234(7):785-93. https://doi.org/10.3181/0812-RM-354
  85. Zhang B, Li Y, Liu JW, Liu XW, Wen W, Cui Y, et al. Postsynaptic GluR2 involved in amelioration of Aβ-induced memory dysfunction by KAIXIN-San through rescuing hippocampal LTP in mice. Rejuvenation Res. 2019;22(2):131-7. https://doi.org/10.1089/rej.2018.2080
  86. Yu S, Liu S, Wang N, Yu D, Qin M, Wu J, et al. Novel insights into antidepressant mechanism of Kai Xin San formula: inhibiting NLRP3 inflammasome activation by promoting autophagy. Phytomedicine. 2021;93:153792.
  87. Li X, Wen W, Li P, Fu Y, Chen H, Wang F, et al. Mitochondrial protection and against glutamate neurotoxicity via Shh/Ptch1 signaling pathway to ameliorate cognitive dysfunction by Kaixin San in multi-infarct dementia rats. Oxid Med Cell Longev. 2021;2021:5590745.
  88. Xu YM, Wang XC, Xu TT, Li HY, Hei SY, Luo NC, et al. Kai Xin San ameliorates scopolamine-induced cognitive dysfunction. Neural Regen Res. 2019;14(5):794-804. https://doi.org/10.4103/1673-5374.249227
  89. Huang YL, Liang XB, Qian LQ, Cai C, Guo J, Gao C, et al. Effects of Kaixin Powder on melatonin receptor expression and (125)I-Mel binding affinity in a rat model of depression. Chin J Integr Med. 2015;21(7):507-15. https://doi.org/10.1007/s11655-014-1787-x
  90. Wang N, Jia YM, Zhang B, Xue D, Reeju M, Li Y, et al. Neuroprotective mechanism of Kai Xin San: upregulation of hippocampal insulin-degrading enzyme protein expression and acceleration of amyloid-beta degradation. Neural Regen Res. 2017;12(4):654-9. https://doi.org/10.4103/1673-5374.205107
  91. Huang SJ, Zhang XH, Wang YY, Pan JH, Cui HM, Fang SP, et al. Effects of Kaixin Jieyu Decoction (开心解郁汤) on behavior, monoamine neurotransmitter levels, and serotonin receptor subtype expression in the brain of a rat depression model. Chin J Integr Med. 2014;20(4):280-5. https://doi.org/10.1007/s11655-014-1343-0
  92. Zhang XH, Huang SJ, Wang YY, Zhang Y, Pan JH, Zheng J, et al. Effects of kaixin jieyu decoction on behavior and glial fibrillary acidic protein expression in cerebral hippocampus of a rat vascular depression model. Chin J Integr Med. 2015;21(3):223-8. https://doi.org/10.1007/s11655-014-1820-8
  93. Xiong W, Zhao X, Xu Q, Wei G, Zhang L, Fan Y, et al. Qisheng Wan formula ameliorates cognitive impairment of Alzheimer's disease rat via inflammation inhibition and intestinal microbiota regulation. J Ethnopharmacol. 2022;282:114598.
  94. Hui S, Yang Y, Peng WJ, Sheng CX, Gong W, Chen S, et al. Protective effects of Bushen Tiansui decoction on hippocampal synapses in a rat model of Alzheimer's disease. Neural Regen Res. 2017;12(10):1680-6. https://doi.org/10.4103/1673-5374.217347
  95. Huang Q, Zhang C, Qu S, Dong S, Ma Q, Hao Y, et al. Chinese herbal extracts exert neuroprotective effect in Alzheimer's disease mouse through the dopaminergic synapse/apoptosis signaling pathway. Front Pharmacol. 2022;13:817213.
  96. Peng A, Gao Y, Zhuang X, Lin Y, He W, Wang Y, et al. Bazhu decoction, a traditional Chinese medical formula, ameliorates cognitive deficits in the 5xFAD mouse model of Alzheimer's disease. Front Pharmacol. 2019;10:1391.
  97. Lee MR, Yun BS, Park SY, Ly SY, Kim SN, Han BH, et al. Anti-amnesic effect of Chong-Myung-Tang on scopolamine-induced memory impairments in mice. J Ethnopharmacol. 2010;132(1):70-4. https://doi.org/10.1016/j.jep.2010.07.041
  98. Lin C, Zhou Z, Xu J, Li Q, Guo J, Long M, et al. Changes of brain activity during a functional magnetic resonance imaging stroop task study: effect of Chinese herbal formula in Alzheimer's disease. Eur J Integr Med. 2017;16:46-53. https://doi.org/10.1016/j.eujim.2017.10.005
  99. Bae N, Ahn T, Chung S, Oh MS, Ko H, Oh H, et al. The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson's disease. J Ethnopharmacol. 2011;134(2):313-22. https://doi.org/10.1016/j.jep.2010.12.016