DOI QR코드

DOI QR Code

큰 조차에 따라 변화하는 지형의 대천 해수욕장 이안류 발생 특성 수치모의 연구

A Numerical Study of Rip Current Generation Modulated with Tidal Elevations at the Daecheon Beach

  • 최준우 (한국건설기술연구원 수자원하천연구본부)
  • Junwoo, Choi (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2022.11.10
  • 심사 : 2022.12.08
  • 발행 : 2022.12.31

초록

서해안에서 대규모 조차에 의해 변화하는 연안 수심의 영향으로 서로 다른 원인으로 생성되는 이안류 발달 특성을 수치모의 결과를 이용하여 검토하였다. 대천 해수욕장 앞바다의 수심자료를 이용하여 Boussinesq 방정식을 지배방정식으로 하는 FUNWAVE 모형으로 수치모의를 수행하였다. 대천 해수욕장 앞바다는 간조에서는 수면 위로 드러나는 바위 섬이 되고, 조위가 상승하면 수중의 암초가 되는 간출암들이 존재하는 등의 복잡한 지형이 관찰된다. 이를 포함한 조차에 의해 변화하는 수심지형의 영향으로 변형되는 파의 횡방향 비균등성에 의해 발생하는 이안류가 잘 재현되었다. 그 결과를 기반으로 조위에 따라 발생 가능한 이안류의 특성을 기술하였다.

In order to investigate the generations of rip currents modulated with the tidal elevations at a mega-tidal beach at the West Sea coast, numerical simulations of rip currents over the topography of the Daecheon beach were performed by using a Boussinesq-type wave and current model, FUNWAVE. The mega-tidal coast includes rocky outcrops (i.e., reefs) lying over or under the water surface according to the tidal elevations in the offshore and nearshore bathymetry. The offshore topographically-controlled rip currents were well reproduced due to the alongshore non-uniformities transformed by the tide-modulated topography. This study addressed the generation types of rip currents to occur at the mega-tidal coast with the tide-modulated outcrops and reefs.

키워드

과제정보

본 연구는 해양수산부 국립해양조사원의 "실시간 이안류 감시체계 확대 및 서비스" 사업의 지원으로 수행되었습니다.

참고문헌

  1. Aagaard, T., Greenwood, B. and Nielsen, J. (1997). Mean currents and sediment transport in a rip current. Marine Geology, 140, 25-45. https://doi.org/10.1016/S0025-3227(97)00025-X
  2. Austin, M., Scott, T., Brown, J., Brown, J., MacMahan, J., Masselink, G., and Russell, P. (2010). Temporal observations of rip current circulation on a macro-tidal beach. Continental Shelf Research, 30, 1149-1165. https://doi.org/10.1016/j.csr.2010.03.005
  3. Bowen, AJ. (1969). Rip current: Theoretical investigations. Journal of Geophysical Research, 74, 5467-5478. https://doi.org/10.1029/JC074i023p05467
  4. Bruneau, N., Castelle, B., Bonneton, P., Pedreros, R., Almar, R., Bonneton, N., Bretel, P., Parisot, J.-P., and Senechal, N. (2009). Field observations of an evolving rip current on a meso-macrotidal well-developed inner bar and rip morphology. Continental Shelf Research, 29, 1650-1662. https://doi.org/10.1016/j.csr.2009.05.005
  5. Castelle, B., Bonneton, P., Dupuis, H. and Senechal, N. (2007). Double bar beach dynamics on the high-energy meso-macrotidal French Aquitanian Coast: A review. Marine Geology, 245, 141-159. https://doi.org/10.1016/j.margeo.2007.06.001
  6. Castelle, B., Scott, T., Brander, R.W. and McCarroll, R.J. (2016). Rip current types, circulation and hazard. Earth-Science Reviews, 163, 1-21.
  7. Chen, Q., Dalrymple, R.A., Kirby, J.T., Kennedy, A.B. and Haller, M. (1999). Boussinesq modelling of a rip current system. Journal of Geophysical Research, 104, 20617-20637. https://doi.org/10.1029/1999JC900154
  8. Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A.B. and Chawla, A. (2000). Boussinesq modeling of wave transformation, breaking and runup II: two horizontal dimensions. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(1), 48-56. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(48)
  9. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F. and Thornton, E.B. (2003). Boussinesq modeling of longshore current. Journal of Geophysical Research, 108(C11), 26-1-26-18.
  10. Choi, J., Park, W.K., Bae, J.S. and Yoon, S.B. (2012). Numerical study on a dominant mechanism of rip current at haeundae beach: Honeycomb pattern of waves. J. of the Korean Society of Civil Engineers, 32(5B), 321-320 (in Korean).
  11. Choi, J., Shin, C.H. and Yoon, S.B. (2013). Numerical study on sea state parameters affecting rip current at haeundae beach: Wave Period, Height, Direction and Tidal Elevation. Journal of Korea Water Resources Association, 46(2), 205-218 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.2.205
  12. Choi, J., Kirby, J.T. and Yoon, S.B. (2015). Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions. Coastal Engineering, 101, 17-34. https://doi.org/10.1016/j.coastaleng.2015.04.005
  13. Choi, J. (2015). Numerical simulations of rip currents under phaseresolved directional random wave conditions. J. of Korean Society of Coastal and Ocean Engineers, 27(4), 238-245 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.4.238
  14. Choi, J. and Kim. H.-S. (2016). A boussinesq modelling of a rip current at the daecheon beach in Korea. Journal of Coastal Research, IS75, 1332-1336.
  15. Choi, J. (2022). A numerical study on rip currents at the Haeundae coast changed after the beach nourishment. Journal of Korea Water Resources Association, 55(9), 669-678 (in Korean).
  16. Clark, D.B., Elgar, S. and Raubenheimer, B. (2012). Vorticity generation by short-crested wave breaking. Geophysical Research Letters, 39, L24604, doi:10.1029/2012GL054034.
  17. Dalrymple, R.A. (1975). A mechanism for rip current generation on an open coast. J. Geophys. Res., 80, 3485-3487. https://doi.org/10.1029/JC080i024p03485
  18. Dalrymple, R.A. (1978). Rip currents and their causes. 16th international Conference of Coastal Engineering, Hamburg, 1414-1427.
  19. Dalrymple, R.A., MacMahan, J.H., Reniers, A.J.H.M. and Nelko, V. (2011). Rip currents. Annual Review of Fluid Mechanics, 43, 551-581. https://doi.org/10.1146/annurev-fluid-122109-160733
  20. Feddersen, F. (2014). The generation of surfzone eddies in a strong alongshore current. Journal of Physical Oceanography, 44, 600-617. https://doi.org/10.1175/JPO-D-13-051.1
  21. Gensini, V.A. and Ashley, W.S. (2009). An examination of rip current fatalities in the United States. Natural Hazards, 54(1), 159-175. https://doi.org/10.1007/s11069-009-9458-0
  22. Johnson, D. and Pattiaratchi, C. (2006). Boussinesq modelling of transient rip currents. Coastal Engineering, 53, 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  23. Kennedy, A.B., Chen, Q., Kirby, J.T. and Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. Journal of Waterway, Port, Coastal and Ocean Engineering, 126, 39-47. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
  24. Korea Hydrographic and Oceanographic Agency (2021). Report for Operation of Rip current Warning System in 2021.
  25. Long, J.W. and Ozkan-Haller, H.T. (2005). Offshore controls on nearshore rip currents. J. Geophys. Res., 110(C12). doi:10.1029/2005JC003018.
  26. Long, J.W. and Ozkan-Haller, H.T. (2016). Forcing and variability of nonstationary rip currents. J. Geophys. Res., 121(1), 520-539. doi:10.1002/2015JC010990.
  27. Masselink, G. and Short, A.D. (1993). The effect of tide range on beach morphodynamics and morphology. Journal of Coastal Research, 9, 785-800.
  28. Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T. and Rikiishi, K. (1975). Observations of the directional spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 5, 750-760. https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  29. National Oceanic and Atmospheric (2022). Weather Related Fatality and Injury Statistics, National Weather Service, Available at: https://www.weather.gov/hazstat/ (Accessed: September 1, 2022).
  30. Peregrine, D.H. (1998). Surf zone currents. Theoret. Comput. Fluid Dyn., 10, 295-309. https://doi.org/10.1007/s001620050065
  31. Peregrine, D.H. (1999). Large-scale vorticity generation by breakers in shallow and deep water. Eur. J. Mech. B, 18, 403-408. https://doi.org/10.1016/S0997-7546(99)80037-5
  32. Scott, T., Masselink, G., Austin, M.J. and Russell, P. (2014). Controls on macrotidal rip current circulation and hazard. Geomorphology, 214, 198-215. https://doi.org/10.1016/j.geomorph.2014.02.005
  33. Shin, C.H., Noh, H.K., Yoon, S.B. and Choi, J. (2014). Understanding of rip current generation mechanism at Haeundae beach of Korea: Honeycomb waves. J. Coastal Res., SI(72), 11-15.
  34. Tang, E.-S. and Dalrymple, R.A. (1989). Nearshore circulation: rip currents and wave groups. Advances in Coastal and Ocean Engineering. Plenum Press, New York, 205-230.
  35. Yoon, S.B., Kwon, S.J., Bae, J.S. and Choi, J. (2012). Investigation of characteristics of rip current at haeundae beach based on observation analysis and numerical experiments. J. of the Korean Society of Civil Engineers, 32(4B), 243-251 (in Korean). https://doi.org/10.12652/Ksce.2012.32.4B.243
  36. Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves: Part 1: Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71-92. https://doi.org/10.1017/S0022112095002813