DOI QR코드

DOI QR Code

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm

  • Luo, Weili (School of Civil Engineering, Guangzhou University) ;
  • Wang, Hui (School of Civil Engineering, Guangzhou University) ;
  • Li, Yadong (School of Civil Engineering, Guangzhou University) ;
  • Liang, Xing (School of Civil Engineering, Guangzhou University) ;
  • Zheng, Tongyi (School of Civil Engineering, Guangzhou University)
  • Received : 2020.12.10
  • Accepted : 2022.03.10
  • Published : 2022.03.10

Abstract

In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 51808147).

References

  1. Attari, B. and Tavakkolizadeh, M. (2019), "An experimental investigation on effect of elevated temperatures on bond strength between externally bonded cfrp and concrete", Steel Compos. Struct., 32(5), 559-569. https://doi.org/10.12989/scs.2019.32.5.559.
  2. Barman, S. K., Jebieshia, T.R., Tiwari, P., Maiti, D.K. and Maity, D. (2019), "Two-stage inverse method to detect delamination in composite beam using vibration responses", AIAA J., 57(3), 1312-1322. https://doi.org/10.2514/1.J057471.
  3. Cao, M., Radzieriski, M., Xu, W. and Ostachowicz, W. (2014), "Identification of multiple damage in beams based on robust curvature mode shapes", Mech. Syst. Sig. Processing, 46(2), 468-480. https://doi.org/10.1016/j.ymssp.2014.01.004.
  4. Cao, M., Su, Z., Xu, H., Maciej Radzienski, and Ostachowicz, W. (2020), "A novel damage characterization approach for laminated composites in the absence of material and structural information", Mech. Syst. Sig. Processing, 143, 106831. https://doi.org/10.1016/j.ymssp.2020.106831.
  5. Ding, Z., Li, J. and Lu, Z.R. (2020), "A modified artificial bee colony algorithm for structural damage identification under varying temperature based on a novel objective function", Appl. Mathem. Modelling, 88, 122-141. https://doi.org/10.1016/j.apm.2020.06.039.
  6. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419.
  7. Ghasemi-Ghalebahman, A., Ashory, M.R. and Kokabi, M.J. (2017), "A proper lifting scheme wavelet transform for vibration-based damage identification in composite laminates", J. Thermoplastic Compos. Mater., 31(5), 668-688. https://doi.org/10.1177/0892705717718239.
  8. Gomes, G.F. and Giovani, R.S. (2020), "An efficient two-step damage identification method using sunflower optimization algorithm and mode shape curvature (msdbi-sfo)", Eng. Comput.,1-20. https://doi.org/10.1007/s00366-020-01128-2.
  9. Hao, H. and Xia, Y. (2002), "Vibration-based damage detection of structures by genetic algorithm", J. Comput. Civil Eng., 16(3), 222-229. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222).
  10. Harrison, C. and Butler, R. (2001), "Locating delaminations in composite beams using gradient techniques and a genetic algorithm", AIAA J., 39(7), 1383-1389. https://doi.org/10.2514/2.1457.
  11. Herman, A.P., Orifici, A.C. and Mouritz, A.P. (2013), "Vibration modal analysis of defects in composite t-stiffened panels", Compos. Struct., 104, 34-42. https://doi.org/10.1016/j.compstruct.2013.04.012.
  12. Hou, R., Xia, Y. and Zhou, X. (2017), "Structural damage detection based on l1 regularization using natural frequencies and mode shapes", Struct. Control Health Monit., 25(3), 1-17. https://doi.org/10.1002/stc.2107.
  13. Hou, R., Xia, Y., Xia, Q. and Zhou, X. (2019), "Genetic algorithm based optimal sensor placement for l1-regularized damage detection", Struct. Control Health Monit., 26(1). https://doi.org/10.1002/stc.2274
  14. Hu, H. and Wu, C. (2008), "Development of scanning damage index for the damage detection of plate structures using modal strain energy method", Mech. Syst. Sig. Processing, 23(2), 274-287. https://doi.org/10.1016/j.ymssp.2008.05.001.
  15. Ihesiulor, O.K., Shankar, K., Zhang, Z. and Ray, T. (2014), "Validation of algorithms for delamination detection in composite structures using experimental data", J. Compos. Mater., 48(8), 969-983. https://doi.org/10.1177/0021998313480414.
  16. Jain, M., Singh, V. and Rani, A. (2018), "A novel nature-inspired algorithm for optimization: Squirrel search algorithm", Swarm Evolution. Comput., 44, 148-175. https://doi.org/10.1016/j.swevo.2018.02.013.
  17. Kang, F., Li, J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl. Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050.
  18. Liu, S., Liu, F., Yang, Y., Li, L. and Li, Z. (2020), "Nondestructive evaluation 4.0: Ultrasonic intelligent nondestructive testing and evaluation for composites", Res. Nondestruct. Evaluation, 1-19. https://doi.org/10.1080/09349847.2020.1826613.
  19. Mei, H., Migot, A., Haider, M.F., Joseph, R., Bhuiyan, M.Y. and Giurgiutiu, V. (2019), "Vibration-based in-situ detection and quantification of delamination in composite plates", Sensors, 19(7), 1734. https://doi.org/10.3390/s19071734.
  20. Montalvao, D., Maia, N.M.M. and Ribeiro, A.M.R. (2006), "A review of vibration-based structural health monitoring with special emphasis on composite materials", Shock Vib. Digest, 38(4), 295-324. https://doi.org/10.1177/0583102406065898.
  21. Moskovchenko, A.I., Vavilov, V.P., Bernegger, R., Maierhofer, C., and Chulkov, A.O. (2020), "Detecting delaminations in semitransparent glass fiber composite by using pulsed infrared thermography", J. Nondestruct. Evaluation, 39(3), 1-10. https://doi.org/10.1007/s10921-020-00717-x.
  22. Oliver, G.A., Ancelotti, A.C. and Gomes, G.F. (2021), "Neural network-based damage identification in composite laminated plates using frequency shifts", Neural Comput. Appl., 33(8), 3183-3194. https://doi.org/10.1007/s00521-020-05180-3.
  23. Pan, J., Zhang, Z., Wu, J., Ramakrishnan, K.R. and Singh, H.K. (2018), "A novel method of vibration modes selection for improving accuracy of frequency-based damage detection", Compos. Part B Eng., 159(FEB.15), 437-446. https://doi.org/10.1016/j.compositesb.2018.08.134.
  24. Parhi, A., Singh, B.N. and Panda, S.K. (2020), "Nonlinear free vibration analysis of composite conical shell panel with cluster of delamination in hygrothermal environment", Eng. Comput., 36(4), 1201-1214. https://doi.org/10.1007/s00366-019-00903-0.
  25. Park, J.W. and Yoo, J.H. (2015), "Flexural and compression behavior for steel structures strengthened with carbon fiber reinforced polymers (cfrps) sheet", Steel Compos. Struct., 19(2), 441-465. https://doi.org/10.12989/scs.2015.19.2.441.
  26. Perez, M.A., Pernas-Sanchez, J., Artero-Guerrero, J.A. and Serra-Lopez, R. (2021), "High-velocity ice impact damage quantification in composite laminates using a frequency domain-based correlation approach", Mech. Syst. Sig. Processing, 147, 107124. https://doi.org/10.1016/j.ymssp.2020.107124.
  27. Qiao, P., Lestari, W., Shah, M.G. and Wang, J. (2007), "Dynamics-based damage detection of composite laminated beams using contact and noncontact measurement systems", J. Compos. Mater., 41(10), 1217-1252. https://doi.org/10.1177/0021998306067306.
  28. Sha, G., Radzienski, M., Soman, R., Cao, M., Ostachowicz, W., and Xu, W. (2020), "Multiple damage detection in laminated composite beams by data fusion of Teager energy operator-wavelet transform mode shapes", Compos. Struct., 235, 111798. https://doi.org/10.1016/j.compstruct.2019.111798.
  29. Shoukroun, D., Massimi, L., Iacoviello, F., Endrizzi, M., Bate, D., Olivo, A. and Fromme, P. (2020), "Enhanced composite plate impact damage detection and characterisation using X-Ray refraction and scattering contrast combined with ultrasonic imaging", Compos. Part B: Eng., 181, 107579. https://doi.org/10.1016/j.compositesb.2019.107579.
  30. Solodov, I. and Kreutzbruck, M. (2020), "Ultrasonic frequency mixing via local defect resonance for defect imaging in composites", Ultrasonics, 108, 106221. https://doi.org/10.1016/j.ultras.2020.106221.
  31. Sundarraja, M.C. and Prabhu, G.G. (2013), "Flexural behaviour of cfst members strengthened using cfrp composites", Steel Compos. Struct., 15(6), 623-643. https://doi.org/10.12989/scs.2013.15.6.623.
  32. Xu, W., Fang, H., Cao, M., Zhou, L., Wang, Q. and Ostachowicz, W. (2019), "A noise-robust damage indicator for characterizing singularity of mode shapes for incipient delamination identification in cfrp laminates", Mech. Syst. Sig. Processing, 121(APR.15), 183-200. https://doi.org/10.1016/j.ymssp.2018.10.025.
  33. Zhang, H., Cao, Q., Gao, H., Wang, P., Zhang, W. and Yousefi, N. (2020), "Optimum design of a multi-form energy hub by applying particle swarm optimization", J. Cleaner Production, 260, 121079. https://doi.org/10.1016/j.jclepro.2020.121079.
  34. Zhang, Z., Pan, J., Luo, W., Ramakrishnan, K.R. and Singh, H.K. (2019), "Vibration-based delamination detection in curved composite plates", Compos. Part A: Appl. Sci. Manufact., 119, 261-274. https://doi.org/10.1016/j.compositesa.2019.02.002.
  35. Zheng, T., Liu, J., Luo, W. and Lu, Z. (2018), "Structural damage identification using cloud model based fruit fly optimization algorithm", Struct. Eng. Mech., 67(3), 245-254. https://doi.org/10.12989/sem.2018.67.3.245.
  36. Zheng, T., Luo, W., Hou, R., Lu, Z. and Cui, J. (2020), "A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification", Eng. Optimization, 52(10), 1658-1681. https://doi.org/10.1080/0305215X.2019.1668935.