DOI QR코드

DOI QR Code

Gas Permeation Properties of CO2 and CH4 for PEBAX®/Fumed Silica Hybrid Membranes

PEBAX®/fumed silica 하이브리드 분리막을 통한 CO2와 CH4의 기체투과특성

  • Kim, Hyunjoon (Department of Chemical Engineering, Kyonggi University)
  • Received : 2022.02.04
  • Accepted : 2022.02.23
  • Published : 2022.02.28

Abstract

The objective of this work was to investigate the gas permeation properties of CO2 and CH4 for PEBAX®/TS-530 hybrid membranes and compare with pure PEBAX®-1657 membrane. With FTIR and XRD it was possible to confirm that TS-530 was dispersed well in PEBAX® matrix. Compared with pure PEBAX® membrane, ideal separation factor for PEBAX®/TS-530 (10 wt%) hybrid membrane was enhanced a little. As the amount of TS-530 was increased, the gas permeability coefficients of both CO2 and CH4 were increased, while the ideal separation factor was decreased. This results were explained by the reduction of crystallinity of polyamide block and interchain distance caused by introduction of inorganic nanoparticles. And fumed silica might tend to agglomerate, resulting in forming nonselective nanogaps in the hybrid materials, thus the diffusivity would be enhanced at the expense of diffusivity selectivity.

본 연구에서는 순수 PEBAX® 분리막의 투과특성을 향상시키기 위해 개질된 fumed silica 나노입자를 혼합한 MMMs (mixed matrix membranes) 타입의 PEBAX®/fumed silica 하이브리드 분리막을 제조하고, 이산화탄소와 메탄의 투과 특성을 측정하였다. PEBAX®-1657/TS-530 하이브리드 소재의 경우, FT-IR과 XRD 분석을 통해 PEBAX® 고분자에 무기입자가 비교적 잘 분산되었음을 확인하였다. 기체투과특성 측정 결과 TS-530을 10 wt% 혼합한 분리막의 경우, 순수 PEBAX® 분리막과 비교하여 투과도 계수는 약간 감소하나 이상분리인자는 약간 증가하였다. 이는 비투과성 silica 입자의 도입에 따라 기체 확산 경로가 줄어들고, 경로의 비틀림이 증가하기 때문으로 볼 수 있다. TS-530 함량이 증가함에 따라서는 투과도 계수와 이상분리인자 간에 전형적인 trade-off 경향을 보였다. 이는 TS-530 함량이 증가함에 따라 결정성이 감소하고, 고분자 사슬 간 충전 억제에 따라 자유부피가 증가하기 때문으로 볼 수 있다. 또한 무기입자 함량 증가에 나노간극의 형성 가능성이 높아지고, 이에 따라 기체 확산도가 커지기 때문으로 판단된다.

Keywords

Acknowledgement

본 논문은 2021학년도 경기대학교 연구년 수혜로 연구되었습니다.

References

  1. H. Cong, M. Radosz, B. F. Towler, and Y. Shen, "Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Technol., 55, 281 (2007). https://doi.org/10.1016/j.seppur.2006.12.017
  2. H. Kim, "Gas permeation properties of carbon dioxide and methane for PEBAXTM/TEOS hybrid membranes", Korean Chem. Eng. Res., 49, 460 (2011). https://doi.org/10.9713/kcer.2011.49.4.460
  3. M. Isanejad, and T. Mohammadi, "Effect of amine modification on morphology and performance of poly(ether-block-amide)/fumed silica nanocomposite membranes for CO2 and CH4 separation", Mat. Chem. Phys., 205, 303 (2018). https://doi.org/10.1016/j.matchemphys.2017.11.018
  4. D. Li and S. T. Hwang, "Gas separation by silicon based inorganic membrane at high temperature", J. Membr. Sci., 66, 119 (1992). https://doi.org/10.1016/0376-7388(92)87002-F
  5. A. B. Shelekhin, E. J. Grosgogeat, and S. T. Hwang, "Gas separation properties of a new polymer/inorganic composite membrane", J. Membr. Sci., 66, 129 (1992). https://doi.org/10.1016/0376-7388(92)87003-G
  6. M. L. Sforca, I. V. P. Yoshida, and S. P. Nunes, "Organic-inorganic membranes prepared from polyether diamine and epoxy silane", J. Membr. Sci., 159, 197 (1999). https://doi.org/10.1016/S0376-7388(99)00059-9
  7. T. Chung, L. Y. Jiang, Y. Lia, and S. Kulprathipanja, "Mixed matrix membranes(MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  8. S. S. Yoon and S. R. Hong, "Gas Permeation characteristics of membrane using poly(ether-bamide)/ ZIF-7", Membr. J., 31, 3, 200 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.200
  9. A. Car, C. Stropnik, W. Yave, and K. Peinemann, "PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation", J. Membr. Sci., 307, 88-95 (2008). https://doi.org/10.1016/j.memsci.2007.09.023
  10. P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izak, V. Jarmarova, M. Kacrkova, and G. Clarizia, "Gas transport properties of Pebax®/room temperature ionic liquid gel membranes", Sep. Purif. Technol., 97, 73 (2012). https://doi.org/10.1016/j.seppur.2012.02.041
  11. M. Iwata, T. Adachi, M. Tomidokoro, M. Ohta, and T. Kobayashi, "Hybrid sol-gel membranes of polyacrylonitrile-tetraethoxysilane composites for gas permselectivity", J. Appl. Polym. Sci., 88, 1752 (2003). https://doi.org/10.1002/app.11895
  12. H. Schmidt and H. Wolter, "Organically modified ceramics and their applications", J. Non-Cryst. Solids, 121, 428 (1990). https://doi.org/10.1016/0022-3093(90)90171-H
  13. S. Sridhar, R. Suryamurali, B, Smitha, and T. M. Aminabhavi, "Development of crosslinked poly(etherblock- amide) membrane for CO2/CH4 separation", Colloids and Surfaces A., 297, 267 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.054
  14. V. I. Bondar, B. D. Freeman, and I. Pinnau, "Gas Transport Properties of Poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. (Part B: Polym. Phys.), 38, 2051 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  15. A. Car, A, C. Stropnik, W. Yave, and K. Peinemann, "Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases", Sep. Purif. Technol., 62, 110 (2008). https://doi.org/10.1016/j.seppur.2008.01.001
  16. H. Kim, C. Lim, and S. Hong, "Gas permeation properties of organic-inorganic hybrid membranes prepared from hydroxyl terminated polyether and 3-isocyanatopropyltriethoxysilane", J. Sol-Gel Sci. Technol, 36, 213 (2005). https://doi.org/10.1007/s10971-005-3782-y
  17. J. H. Kim, S. Y. Ha, and Y. M. Lee, "Gas permeation of poly (amide-6-b-ethylene oxide) copolymer", J. Membr. Sci., 190, 2, 179 (2001). https://doi.org/10.1016/S0376-7388(01)00444-6
  18. S. H. Kim and S. R. Hong, "Gas Permeation characteristics by chitosan/Pebax composite membranes", Membr. J., 27, 319 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.319
  19. R. S. Murali, A. Ismail, M. Pahman, and S. Sridhar, "Mixed matrix membranes for Pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  20. N. Azizi and M. R. Hojjati, "Using Pebax-1074/ ZIF-7 mixed matrix membranes for separation of CO2 from CH4, Petrol. Sci. Technol., 36, 993 (2018). https://doi.org/10.1080/10916466.2018.1458120
  21. K. C. Kim and H. Kim, "Transport properties of CO2 and CH4 using poly(ether-block-amide)/GPTMOS hybrid membranes", Korean Chem. Eng. Res., 54, 653 (2016). https://doi.org/10.9713/kcer.2016.54.5.653
  22. L. Mascia, Z. Zhang, and S. J. Shaw, "Carbon fiber composites based on polyimide/silica ceramers: Aspects of structure-properties relationship", Composites A, 27, 1211 (1996). https://doi.org/10.1016/1359-835X(96)00082-6
  23. T. Aida, "Living and immortal polymerizations", Prog. Polym. Sci., 19, 469 (1994). https://doi.org/10.1016/0079-6700(94)90003-5
  24. R. A. Zoppi, C. Garcia, and A. Soares, "Hybids of poly(ethyene oxide-b-amide-6) and ZrO2 sol-gel: Preparation, characterizayion, and application in processes of membrane separation", Adv. Polym. Technol., 21, 2 (2002). https://doi.org/10.1002/adv.10011
  25. Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, "Poly(amide-imide)/TiO2 nanocomposite gas separation membranes: Fabrication and characterization", J. Membr. Sci., 135, 65 (1997). https://doi.org/10.1016/S0376-7388(97)00120-8
  26. A. Mahmoudi, M. Namdari, V. Zargar, G. Khanbabaei, and M. Asghari, "Nanocomposite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation", Int. J. Nano Dimens., 5, 83 (2014).
  27. J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001). https://doi.org/10.1016/S0376-7388(01)00514-2
  28. N. J. Le, Y. Wang, and T. S. Chung, "Pebax/Poss mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation", J. Membr. Sci., 379, 174 (2017). https://doi.org/10.1016/j.memsci.2011.05.060
  29. M. Moaddeb and W. J. Koros, "Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles", J. Membr. Sci., 125, 143 (1997). https://doi.org/10.1016/S0376-7388(96)00251-7
  30. P. Winberg, K. DeSitter, C. Dptremont, S. Mullens, I. F. J. Vankelecom, and F. H. J. Maurer, "Free volume and interstitial mesopores in silica filled poly(1-trimethylsilyl-1-propyne) nanocomposites", Macromolecules, 38, 3776 (2005). https://doi.org/10.1021/ma047369j
  31. Z. He, I. Pinnau, and A. Morisato, "Nanostructured poly(4-methyl-2- pentene)/silica hybrid membrane for gas separation", Desalination, 146, 11 (2002). https://doi.org/10.1016/S0011-9164(02)00463-0
  32. M. F. A. Wahab, A. F. Ismail, and S. J. Shilton "Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers", Sep. Purif. Technol., 86, 41 (2012). https://doi.org/10.1016/j.seppur.2011.10.018