Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.1.74

Gas Permeation Properties of CO2 and CH4 for PEBAX®/Fumed Silica Hybrid Membranes  

Kim, Hyunjoon (Department of Chemical Engineering, Kyonggi University)
Publication Information
Membrane Journal / v.32, no.1, 2022 , pp. 74-82 More about this Journal
Abstract
The objective of this work was to investigate the gas permeation properties of CO2 and CH4 for PEBAX®/TS-530 hybrid membranes and compare with pure PEBAX®-1657 membrane. With FTIR and XRD it was possible to confirm that TS-530 was dispersed well in PEBAX® matrix. Compared with pure PEBAX® membrane, ideal separation factor for PEBAX®/TS-530 (10 wt%) hybrid membrane was enhanced a little. As the amount of TS-530 was increased, the gas permeability coefficients of both CO2 and CH4 were increased, while the ideal separation factor was decreased. This results were explained by the reduction of crystallinity of polyamide block and interchain distance caused by introduction of inorganic nanoparticles. And fumed silica might tend to agglomerate, resulting in forming nonselective nanogaps in the hybrid materials, thus the diffusivity would be enhanced at the expense of diffusivity selectivity.
Keywords
PEBAX; TS-530; silica; gas permeation; membrane;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 T. Aida, "Living and immortal polymerizations", Prog. Polym. Sci., 19, 469 (1994).   DOI
2 Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, "Poly(amide-imide)/TiO2 nanocomposite gas separation membranes: Fabrication and characterization", J. Membr. Sci., 135, 65 (1997).   DOI
3 A. B. Shelekhin, E. J. Grosgogeat, and S. T. Hwang, "Gas separation properties of a new polymer/inorganic composite membrane", J. Membr. Sci., 66, 129 (1992).   DOI
4 M. L. Sforca, I. V. P. Yoshida, and S. P. Nunes, "Organic-inorganic membranes prepared from polyether diamine and epoxy silane", J. Membr. Sci., 159, 197 (1999).   DOI
5 T. Chung, L. Y. Jiang, Y. Lia, and S. Kulprathipanja, "Mixed matrix membranes(MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007).   DOI
6 S. S. Yoon and S. R. Hong, "Gas Permeation characteristics of membrane using poly(ether-bamide)/ ZIF-7", Membr. J., 31, 3, 200 (2021).   DOI
7 H. Kim, C. Lim, and S. Hong, "Gas permeation properties of organic-inorganic hybrid membranes prepared from hydroxyl terminated polyether and 3-isocyanatopropyltriethoxysilane", J. Sol-Gel Sci. Technol, 36, 213 (2005).   DOI
8 M. Isanejad, and T. Mohammadi, "Effect of amine modification on morphology and performance of poly(ether-block-amide)/fumed silica nanocomposite membranes for CO2 and CH4 separation", Mat. Chem. Phys., 205, 303 (2018).   DOI
9 D. Li and S. T. Hwang, "Gas separation by silicon based inorganic membrane at high temperature", J. Membr. Sci., 66, 119 (1992).   DOI
10 P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izak, V. Jarmarova, M. Kacrkova, and G. Clarizia, "Gas transport properties of Pebax®/room temperature ionic liquid gel membranes", Sep. Purif. Technol., 97, 73 (2012).   DOI
11 S. Sridhar, R. Suryamurali, B, Smitha, and T. M. Aminabhavi, "Development of crosslinked poly(etherblock- amide) membrane for CO2/CH4 separation", Colloids and Surfaces A., 297, 267 (2007).   DOI
12 A. Car, A, C. Stropnik, W. Yave, and K. Peinemann, "Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases", Sep. Purif. Technol., 62, 110 (2008).   DOI
13 A. Car, C. Stropnik, W. Yave, and K. Peinemann, "PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation", J. Membr. Sci., 307, 88-95 (2008).   DOI
14 M. F. A. Wahab, A. F. Ismail, and S. J. Shilton "Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers", Sep. Purif. Technol., 86, 41 (2012).   DOI
15 S. H. Kim and S. R. Hong, "Gas Permeation characteristics by chitosan/Pebax composite membranes", Membr. J., 27, 319 (2017).   DOI
16 R. S. Murali, A. Ismail, M. Pahman, and S. Sridhar, "Mixed matrix membranes for Pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014).   DOI
17 N. J. Le, Y. Wang, and T. S. Chung, "Pebax/Poss mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation", J. Membr. Sci., 379, 174 (2017).   DOI
18 M. Moaddeb and W. J. Koros, "Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles", J. Membr. Sci., 125, 143 (1997).   DOI
19 Z. He, I. Pinnau, and A. Morisato, "Nanostructured poly(4-methyl-2- pentene)/silica hybrid membrane for gas separation", Desalination, 146, 11 (2002).   DOI
20 H. Schmidt and H. Wolter, "Organically modified ceramics and their applications", J. Non-Cryst. Solids, 121, 428 (1990).   DOI
21 V. I. Bondar, B. D. Freeman, and I. Pinnau, "Gas Transport Properties of Poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. (Part B: Polym. Phys.), 38, 2051 (2000).   DOI
22 H. Cong, M. Radosz, B. F. Towler, and Y. Shen, "Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Technol., 55, 281 (2007).   DOI
23 H. Kim, "Gas permeation properties of carbon dioxide and methane for PEBAXTM/TEOS hybrid membranes", Korean Chem. Eng. Res., 49, 460 (2011).   DOI
24 M. Iwata, T. Adachi, M. Tomidokoro, M. Ohta, and T. Kobayashi, "Hybrid sol-gel membranes of polyacrylonitrile-tetraethoxysilane composites for gas permselectivity", J. Appl. Polym. Sci., 88, 1752 (2003).   DOI
25 J. H. Kim, S. Y. Ha, and Y. M. Lee, "Gas permeation of poly (amide-6-b-ethylene oxide) copolymer", J. Membr. Sci., 190, 2, 179 (2001).   DOI
26 N. Azizi and M. R. Hojjati, "Using Pebax-1074/ ZIF-7 mixed matrix membranes for separation of CO2 from CH4, Petrol. Sci. Technol., 36, 993 (2018).   DOI
27 A. Mahmoudi, M. Namdari, V. Zargar, G. Khanbabaei, and M. Asghari, "Nanocomposite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation", Int. J. Nano Dimens., 5, 83 (2014).
28 K. C. Kim and H. Kim, "Transport properties of CO2 and CH4 using poly(ether-block-amide)/GPTMOS hybrid membranes", Korean Chem. Eng. Res., 54, 653 (2016).   DOI
29 L. Mascia, Z. Zhang, and S. J. Shaw, "Carbon fiber composites based on polyimide/silica ceramers: Aspects of structure-properties relationship", Composites A, 27, 1211 (1996).   DOI
30 R. A. Zoppi, C. Garcia, and A. Soares, "Hybids of poly(ethyene oxide-b-amide-6) and ZrO2 sol-gel: Preparation, characterizayion, and application in processes of membrane separation", Adv. Polym. Technol., 21, 2 (2002).   DOI
31 J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001).   DOI
32 P. Winberg, K. DeSitter, C. Dptremont, S. Mullens, I. F. J. Vankelecom, and F. H. J. Maurer, "Free volume and interstitial mesopores in silica filled poly(1-trimethylsilyl-1-propyne) nanocomposites", Macromolecules, 38, 3776 (2005).   DOI