DOI QR코드

DOI QR Code

Elongation Behavior of Polymeric Materials for Membrane Applications Using Molecular Dynamics

분자동역학을 이용한 분리막용 소재로 사용되는 고분자 소재의 신장거동 연구

  • Kang, Hoseong (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University (GNU)) ;
  • Park, Chi Hoon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University (GNU))
  • 강호성 (경상국립대학교 미래융복합기술연구소 에너지공학과) ;
  • 박치훈 (경상국립대학교 미래융복합기술연구소 에너지공학과)
  • Received : 2022.01.31
  • Accepted : 2022.02.12
  • Published : 2022.02.28

Abstract

Recently, computer simulation research has been rapidly increasing due to the development of computer and software technology. In particular, various computational simulation results related to polymers, which were previously limited by problems of the number of atoms and model size, are being published. In this study, a study was conducted to analyze the mechanical properties, one of the important properties for using a polymer material as a membrane, using molecular dynamics (MD) simulation. To this end, polyethylene (PE) and polystyrene (PS), which are commercial polymer materials with widely reported related properties, were selected as polymer models and the tensile properties of each polymer were compared through the difference in main chain length. Through the density, radius of gyration, and scattering analysis, it was found that the model produced in this study was in good agreement with the mechanical property trends obtained in the actual experiment. It is expected to enable the prediction of mechanical properties of various polymer materials for membrane fabrication.

최근 들어 컴퓨터 및 소프트웨어 기술의 발달로 전산모사 관련 연구가 급격하게 늘어나고 있는데, 특히 원자의 개수 및 모델 크기의 문제로 기존에는 많은 제약을 받던 고분자 관련 다양한 전산모사 결과들이 발표되고 있다. 본 연구에서는 고분자 소재를 필름형태의 분리막으로 활용하기 위한 중요한 특성 중 하나인 기계적 특성을 분자동역학 전산모사를 이용하여 분석하고자 하는 연구를 진행하였다. 이를 위하여 이미 관련 물성이 널리 보고되어 있는 상용 고분자 소재인 polyethylene (PE)과 polystyrene (PS)을 대상으로 선정하여 주쇄길이 차이를 통한 각 고분자들의 인장특성을 비교하였고, 최종적으로 분자동역학 전산모사의 기계적 특성 분석이 적합한지 확인하고자 하였다. 밀도, radius of gyration, scattering 분석을 통해 본 연구에서 제작된 모델이 실제 실험에서 얻어진 기계적 특성 경향과 잘 일치함을 알 수 있었고, 따라서 분자동역학 전산모사를 이용한 기계적 특성 분석이 다양한 고분자 소재들의 분자 구조에 따른 기계적 특성을 예측할 수 있게 해주며, 실제 실험에서는 적용하기 어려운 다양한 변수들을 반영한 기계적 특성 해석도 가능하게 해 줄 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 2020~2021년도 경상국립대학교 대학회계 연구비 지원에 의하여 작성되었음

References

  1. H. Kang and C. H. Park, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.67
  2. C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.329
  3. J. M. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, "Molecular dynamics simulation: elementary methods", Comput. Phys., 7, 625 (1993).
  4. C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A simulation study on OH-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): relationship between gas transport properties and free volume morphology", J. Phys. Chem. B, 118, 2746 (2014). https://doi.org/10.1021/jp411612g
  5. C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864 (2012). https://doi.org/10.1021/jp307365y
  6. Y. Jiang, F. T. Willmore, D. Sanders, Z. P. Smith, C. P. Ribeiro, C. M. Doherty, A. Thornton, A. J. Hill, B. D. Freeman, and I. C. Sanchez, "Cavity size, sorption and transport characteristics of thermally rearranged (TR) polymers", Polymer, 52, 2244 (2011). https://doi.org/10.1016/j.polymer.2011.02.035
  7. P. V. Komarov, I. N. Veselov, P. P. Chu, and P. G. Khalatur, "Mesoscale simulation of polymer electrolyte membranes based on sulfonated poly (ether ether ketone) and Nafion", Soft Matter, 6, 3939 (2010). https://doi.org/10.1039/b921369d
  8. S.-T. Kao, Y.-H. Huang, K.-S. Liao, W.-S. Hung, K.-S. Chang, M. De Guzman, S.-H. Huang, D.-M. Wang, K.-L. Tung, and K.-R. Lee, "Applications of positron annihilation spectroscopy and molecular dynamics simulation to aromatic polyamide pervaporation membranes", J. Membr. Sci., 348, 117 (2010). https://doi.org/10.1016/j.memsci.2009.10.048
  9. K.-S. Chang, Y.-H. Huang, K.-R. Lee, and K.-L. Tung, "Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study", J. Membr. Sci., 354, 93 (2010). https://doi.org/10.1016/j.memsci.2010.02.076
  10. W. D. Callister Jr. and D. G. Rethwisch, "Callister's materials science and engineering", John Wiley & Sons, Inc., Hoboken, New Jersey (2020).
  11. K. Balani, V. Verma, A. Agarwal, and R. Narayan, "Biosurfaces: a materials science and engineering perspective", John Wiley & Sons, Inc., Hoboken, New Jersey (2015).
  12. A. K. Bhowmick, "Mechanical properties of polymers", Materials Science And Engineering-Volume I, 5, 156 (2009).
  13. Y.-W. Kim, D.-H. Cho, S.-Y. Bae, and H. Kumaawa, "Sorption and diffusion of carbon dioxide in polystyrene membrane", Membr. J., 3, 79 (1993).
  14. J.-S. Ryu, T.-B. Jeon, J.-H. Kim, and K.-Y. Chung, "Processing characteristics of the condensed wastewater resulting from food waste disposal using a submerged polyethylene hollow fiber membrane", Membr. J., 20, 127 (2010).
  15. J. H. Lee and C. H. Park, "Effect of force-field types on the proton diffusivity calculation in molecular dynamics (MD) simulation", Membr. J., 27, 358 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.358
  16. H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998). https://doi.org/10.1021/jp980939v
  17. H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 1 (2016). https://doi.org/10.1007/s00894-015-2876-x
  18. H. Sun, P. Ren, and J. Fried, "The COMPASS force field: parameterization and validation for phosphazenes", Comput. Theor. Polym. Sci., 8, 229 (1998). https://doi.org/10.1016/S1089-3156(98)00042-7
  19. M. Fixman, "Radius of gyration of polymer chains", The Journal of Chemical Physics, 36, 306 (1962). https://doi.org/10.1063/1.1732501
  20. G. Beaucage, "Approximations leading to a unified exponential/power-law approach to small-angle scattering", J. Appl. Crystallogr., 28, 717 (1995). https://doi.org/10.1107/S0021889895005292
  21. S. Paszkiewicz, A. Szymczyk, A. Zubkiewicz, J. Subocz, R. Stanik, and J. Szczepaniak, "Enhanced Functional properties of low-density polyethylene nanocomposites containing hybrid fillers of multiwalled carbon nanotubes and nano carbon black", Polymers, 12, 1356 (2020). https://doi.org/10.3390/polym12061356
  22. S. A. Reemas, and R. Maheswaran, "Effect of EPS volume fraction in buoyancy characteristics of expanded polystyrene/epoxy sandwich composites", Int. J. Mater. Eng., 8, 146 (2017). https://doi.org/10.1504/IJMATEI.2017.088092
  23. F. Marinkovic, D. Popovic, J. Jovanovic, B. Stankovic, and B. Adnadjevic, "Methods for quantitative determination of filler weight fraction and filler dispersion degree in polymer composites: Example of low-density polyethylene and NaA zeolite composite", Appl. Phys. A, 125, 1 (2019). https://doi.org/10.1007/s00339-018-2286-x
  24. J. Fang, Y. Xuan, and Q. Li, "Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals", Sci. China Technol. Sci., 53, 3088 (2010). https://doi.org/10.1007/s11431-010-4110-5
  25. E. Franco-Urquiza, N. Camacho, and M. L. Maspoch, "Tensile properties of LDPE/electrical cable waste blends prepared by melt extrusion process", Afinidad, 74, (2017).
  26. M. Ionita, A. M. Pandele, L. E. Crica, and A. C. Obreja, "Preparation and characterization of polysulfone/ ammonia-functionalized graphene oxide composite membrane material", High Perform. Polym., 28, 181 (2016). https://doi.org/10.1177/0954008315576233