DOI QR코드

DOI QR Code

Characteristics of Perovskite Solar Cells with ZnO Coated on Mesoporous TiO2 as an Electron Transfer Layer

  • Ahn, Joonsub (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Song, Jaegwan (Research&Development Department, PMC Tech) ;
  • Han, Eunmi (School of Chemical Engineering, Chonnam National University)
  • Received : 2022.01.26
  • Accepted : 2022.02.03
  • Published : 2022.02.27

Abstract

We fabricated 3 types of ETL, mp TiO2, ZnO, and ZnO coated on mp TiO2(ZMT) to compare the photoelectric conversion efficiency (PCE) and fill factor (FF) of Perovskite solar cells. The structure of the cells was FTO/ETL/Perovskite (CH3NH3PbI3)/spiro-MeOTAD/Ag. SEM morphology assessment of the ETLs showed that mp TiO2 was porous, ZnO was flat, and the ZMT porous surface was filled with a thin layer. Via XRD measurements, the crystal structures of mp TiO2 and ZnO ETL were found to be anatase and wurtzite, respectively. The XPS patterns showing energy bonding of mp TiO2, ZnO, and ZMT O 1s confirmed these materials to be metal oxides such as ETL. The electrical characteristics of the Perovskite solar cells were measured using a solar simulator. Perovskite solar cells with ZMT ETL showed showed PCE of 10.29 % than that of conventional mp TiO2 ETL devices. This was considered a result of preventing Perovskite from seeping into the ETL and preventing recombination of electrons and holes.

Keywords

References

  1. E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh and J. W. Seo, Nature, 567, 511 (2019). https://doi.org/10.1038/s41586-019-1036-3
  2. M. A. Green, E. D. Dunlop, D. H. Levi, J. H. Ebinger, M. Yosita and A. W. Y. Ho-Baillie, Prog. Photovolt.: Res. Appl., 27, 565 (2019). https://doi.org/10.1002/pip.3171
  3. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 3, 4088 (2011). https://doi.org/10.1039/c1nr10867k
  4. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Sci. Rep., 2, 591 (2012). https://doi.org/10.1038/srep00591
  5. H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang and S. Dai, Chem. Commun., 49, 7277, (2013). https://doi.org/10.1039/c3cc42297f
  6. H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel and N. G. Park, Nano Lett., 13, 2412 (2013). https://doi.org/10.1021/nl400286w
  7. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel and S. I. Seok, Nat. Photonics, 7, 486 (2013). https://doi.org/10.1038/nphoton.2013.80
  8. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix and N. Mathews, Chem. Commun., 49, 11089 (2013). https://doi.org/10.1039/c3cc46534a
  9. D. Y. Son, J. H. Im, H. S. Kim and N. G. Park, J. Phys. Chem. C, 118, 16567 (2014). https://doi.org/10.1021/jp412407j
  10. D. Liu and T. L. Kelly, Nat. Photonics, 8, 133 (2014). https://doi.org/10.1038/nphoton.2013.342
  11. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 338, 643 (2012). https://doi.org/10.1126/science.1228604
  12. E. Edri, S. Kirmayer, D. Cahen and G. Hodes, J. Phys. Chem. Lett., 4, 897 (2013). https://doi.org/10.1021/jz400348q
  13. E. Edri, S. Kirmayer, M. Kulbak, G. Hodes and D. Cahen, J. Phys. Chem. Lett., 5, 429 (2014). https://doi.org/10.1021/jz402706q
  14. B. Cai, Y. Xing, Z. Yang, W. H. Zhang and J. Qiu, Energy Environ. Sci., 6, 1480 (2013). https://doi.org/10.1039/c3ee40343b
  15. S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo and S. I. Seok, Energy Environ. Sci., 7, 2614 (2014). https://doi.org/10.1039/C4EE00762J
  16. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, p.45, 73, 89, Eds. J. Chastain, Perkin-Elmer Corporation, Minnesota, USA (1992).