DOI QR코드

DOI QR Code

고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화

Rock Mechanics Site Characterization for HLW Disposal Facilities

  • 엄정기 (부경대학교 에너지자원공학과) ;
  • 현승규 (한국원자력안전기술원 원자력안전연구실)
  • Um, Jeong-Gi (Dept. of Energy Resources Engineering, Pukyong National University) ;
  • Hyun, Seung Gyu (Dept. of Nuclear Safety Research, Korea Institute of Nuclear Safety)
  • 투고 : 2022.01.25
  • 심사 : 2022.02.14
  • 발행 : 2022.02.28

초록

암반의 역학적 및 열적 특성은 고준위방사성폐기물(high-level radioactive waste; HLW) 심지층 처분시스템 내 방사성 물질의 격리 및 이동 지연 능력과 관련된 성능에 영향을 미칠 수 있다. 이 연구는 HLW 처분시설 부지의 암반역학적 및 열적 특성과 관련된 부지설명모델에 필수적인 항목을 고찰하고 스웨덴과 핀란드의 선행 부지설명모델 사례를 통한 기술적 배경을 논의하였다. 스웨덴 SKB (Swedish Nuclear and Fuel Management Company)와 핀란드 Posiva는 암반역학적 및 열적 특성 조사·평가에 필수적인 항목을 제시하고 부지의 안전성 분석과 처분시설의 건설을 위한 암반역학 부지설명모델을 도출하였다. 암반역학 부지설명모델은 처분시설 부지 내 응력 분포와 더불어 신선암, 절리, 절리성 암반에 대한 강도 및 변형특성과 대규모 변형대의 기하학적 구조, 소규모 불연속면의 연결망 구조 및 암석의 열적 특성에 대한 조사·평가 결과를 포함한다. 또한, 암반역학 부지설명모델은 입력변수에 대한 민감도 분석결과와 입력변수의 불확실성에 대한 평가 결과를 제시하여야 한다.

The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.

키워드

과제정보

이 연구는 원자력안전재단의 지원을 받아 수행되었다(NSRM 1805020-0421-CG100).

참고문헌

  1. Barton, N. (2002). Some new Q-value correlations to assist in site characterization and tunnel design. International Journal of Rock Mechanics and Mining Sciences, v.39, p.185-216. doi: 10.1016/S1365-1609(02)00011-4
  2. Bieniawski, Z.T. and Bernede, M.J. (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, v.16, p.138-140. doi: 10.1016/0148-9062(79)91451-7
  3. Brady, B.H.G. and Brown, E.T. (1993) Rock mechanics: for underground mining, 2nd ed., Chapman & Hall, 571p.
  4. Hoek, E., Kaiser, P.K. and Bawden, W.F. (1995) Support of underground excavations in hard rock, A.A. Balkema, Rotterdam, 215p.
  5. IAEA (2011a) Disposal of radioactive waste: specific safety requirements. No. SSR-5, Vienna, Austria, 104p.
  6. IAEA (2011b) Geological disposal facilities for radioactive waste: specific safety guide, No. SSG-14, Vienna, Austria, 62p.
  7. ISRM (1978a) Suggested methods for determining strength of rock materials in triaxial compression, International Journal of Rock Mechanics and Mining Sciences, v.15, p.47-51. doi: 10.1016/0148-9062(78)91677-7
  8. ISRM (1978b) Suggested methods for determining tensile strength of rock materials. International Journal of Rock Mechanics and Mining Sciences, v.15, p.99-103. doi: 10.1016/0148-9062(78)90003-7
  9. ISRM (1978c) Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences, v.15, p.319-368. doi: 10.1016/0148-9062(78)91472-9
  10. Posiva (2012a) Olkiluoto site descripiton 2011. Posiva 2011-02, Posiva OY, Eurajoki, Finland, 1029p.
  11. Posiva (2012b) ONKALO rock mechanics model (RMM) version 2.0. WR 2012-07, Posiva OY, Olkiluoto, Finland, 94p.
  12. Posiva (2018) Rock mechanics parametrization of fractures and brittle deformation zones of ONKALO based on the mapping data - synthesis. Posiva 2018-01, Posiva OY, Eurajoki, Finland, 208p.
  13. Ryu, S. J. and Um, J. G. (2020) Effect of joint geometry on anisotropic deformability of jointed rock masses. Econ. Environ. Geol., v.53, p.271-285. doi: 10.9719/EEG.2020.53.3.271
  14. Ryu, S. J., Um, J. G. and Park, J. Y. (2020) Estimation of strength and deformation modulus of the 3-D DFN system using the distinct element method. Tunnel and Underground Space, v.30, p.15-28. doi: 10.7474/TUS.2020.30.1.015
  15. SKB (2001) Site investigations: Investigation methods and general execution programme. TR-01-29, SKB, Stockholm, Sweden, 264p.
  16. SKB (2002a) Fracture network models in three dimensions for four 30m cubes located at a depth region of 380-500m at Aspo HRL. IPR-02-12. SKB, Stockholm, Sweden, 134p.
  17. SKB (2002b) Estimation of rock mass strength and deformation in three dimensions for four 30m cubes located at a depth region of 380-500m at Aspo HRL. IPR-02-11, SKB, Stockholm, Sweden, 81p.
  18. SKB (2002c) Site investigations: Strategy for rock mechanics site descriptive model. TR-02-01. SKB, Stockholm, Sweden, 155p.
  19. SKB (2003) Forsmark site investigation: Borehole: KFM01A, Determination of P-wave velocity, transverse borehole core. IPR-03-38, SKB, Stockholm, Sweden, 28p.
  20. SKB (2004) Preliminary site description: Forsmark area - version 1.1. R-04-15, SKB, Stockholm, Sweden, 523p.
  21. SKB (2007a) Rock mechanics Forsmark: Site descriptive modelling: Forsmark stage 2.2. R-07-31, SKB, Stockholm, Sweden, 277p.
  22. SKB (2007b) Quantifying in situ stress magnitudes and orientations for Forsmark: Forsmark stage 2.2. R-07-26, SKB, Stockholm, Sweden, 95p.
  23. SKB (2007c) Geology Forsmark: Site descriptive modelling: Forsmark stage 2.2. R-07-45, SKB, Stockholm, Sweden, 224p.
  24. SKB (2007d) Statistical geological discrete fracture network model: Forsmark modelling stage 2.2. R-07-46, SKB, Stockholm, Sweden, 139p.
  25. SKB (2008) Site description of Forsmark at completion of the site investigation phase: SDM - Site Forsmark. TR-08-05, SKB, Stockholm, Sweden, 545p.
  26. SKB (2009) Strategy for thermal dimensioning of the final repository for spent nuclear fuel. R-09-04, SKB Stockholm, Sweden, 95p.