DOI QR코드

DOI QR Code

Effects of Temperature on the Development and Fecundity of Maruca vitrata (Lepidoptera: Crambidae)

콩명나방(Maruca vitrata) (나비목: 포충나방과) 발육과 산란에 미치는 온도의 영향

  • Jeong Joon, Ahn (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Eun Young, Kim (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Bo Yoon, Seo (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jin Kyo, Jung (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Si-Woo, Lee (R&DB Foundation, Korea National College of Agriculture and Fisheries)
  • 안정준 (국립원예특작과학원 온난화대응농업연구소) ;
  • 김은영 (국립식량과학원 재배환경과) ;
  • 서보윤 (국립식량과학원 기초기반과) ;
  • 정진교 (국립식량과학원 재배환경과) ;
  • 이시우 (국립한국농수산대학 산학협력단)
  • Received : 2022.09.06
  • Accepted : 2022.10.18
  • Published : 2022.12.01

Abstract

Maruca vitrata is one of important pests in leguminous crops, especially red bean. We investigated the effects of temperature on development of each life stage, adult longevity and fecundity of M. vitrata for understanding the biological characteristics of the insect species at eight constant temperatures of 13, 16, 19, 22, 25, 28, 31, and 34℃. Eggs hatched successfully at all temperature subjected and larvae successfully developed to the adult stage from 16℃ to 31℃. The developmental period of egg decreased up to 31℃ and after then increased. The developmental period of larva and pupa, and adult longevity of M. vitrata decreased with increasing temperature. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. vitrata were estimated by linear regression as 12.8℃ and 280.8DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 14.2℃ and 31.9℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. vitrata was 17.7℃. In addition, we constructed the oviposition models of adult, using the investigated adult traits including survival, longevity, oviposition period and fecundity. Temperature-dependent development models and adult oviposition models will be helpful to understand the population dynamics of M vitrata and to establish the strategy of integrated pest management in legume crops.

콩명나방은 콩과작물 특히 팥을 가해하는 해충으로 알려져 있다. 본 연구는 콩명나방의 생물적 특징을 알아보기 위해 발육단계별 발육기간, 성충의 수명과 번식능력을 13, 16, 19, 22, 25, 28, 31, 34℃ 항온조건에서 조사하였다. 알은 모든 항온조건에서 부화하였고 유충은 16~31℃ 온도조건에서 성공적으로 성충까지 발육을 완료하였다. 알의 발육기간은 31℃까지 온도가 상승할수록 짧아지다가 이후 온도에서 길어지는 경향을 보였다. 유충, 번데기의 발육기간과 성충수명은 온도가 상승할수록 감소하였다. 콩명나방 발육단계별 발육 최저, 최고 한계는 LRF와 SSI모델을 이용하여 계산하였고 발육영점온도와 유효적산온일도는 선형회귀분석을 이용하였다. 1령 유충 부화부터 성충출현까지의 발육영점온도와 유효적산온일도는 12.8℃와 280.8DD였다. SSI모델을 이용하여 추정한 부화부터 성충출현까지 발육최저 및 최고온도는 14.2℃과 31.9℃였고 이들간의 차이 즉 발육적정온도범위는 17.7℃였다. 온도와 관련된 콩명나방 성충의 생존, 수명, 산란기간, 산란수 자료들을 이용하여 산란모형을 작성하였다. 본 연구에서 제시한 온도발육모형과 산란모형은 야외에서 콩명나방의 개체군동태를 이해하고 콩과작물의 종합적인 해충군관리체계 확립에 기여할 것으로 보인다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 어젠다 연구과제(PJ01182001)를 수행하는 과정에서 얻은 결과를 바탕으로 작성되었다.

References

  1. Adati, T., Nakamura, S., Tamo, M., Kawazu, K., 2004. Effect of temperature on development and survival of the legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera: Pyralidae) reared on a semi-synthetic diet. Appl. Entomol. Zool. 39, 139-145.  https://doi.org/10.1303/aez.2004.139
  2. Agunbiade, T.A., Coates, B.S., Kim, K.S., Forgacs, D., Margam, V.M., Murdock, L.L., Ba, M.N., Binso-Dabire, C.L., Baoua, I., Ishiyaku, M.F., Tamo, M., Pittendrigh, B.R., 2012. The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Crambidae) populations in West Africa. B. Entomol. Res. 102, 589-599.  https://doi.org/10.1017/S0007485312000156
  3. Agunbiade, T.A., Coates, B.S., Datinon, B., Djouaka, R., Sun, W., Tamo, M., Pittendrigh, B.R., 2014. Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) populations on cultivated cowpea and wild host plants: implications for insect resistance management and biological control strategies. PLoS ONE 9, e92072. 
  4. Ahn, J.J., Choi, K.S., Koh, S., 2019a. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74.  https://doi.org/10.1007/s13355-018-0593-5
  5. Ahn, J.J., Choi, K.S., Koh, S., 2019b. Using viable eggs to determine oviposition models and life table analysis of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae). Korean J. Appl. Entomol. 58, 111-120.  https://doi.org/10.5656/KSAE.2019.04.1.063
  6. Bae, Y.S., 2001. Family Pyraloidea: Pyraustinae & Pyraliae. Economic insects of Korea. Ins. Koreana 9, Suppl. 16, Junghaeng-Sa, Seoul. 
  7. Bottenberg, H., Tamo, M., Arodokoun, D., Jackai, L.E.N., Singh, B.B., Youm, O., 1997. Population dynamics and migration of cowpea pests in northern Nigeria: implications for integrated pest management, in: Singh, B.B., Mohan Raj, D.R., Dashiell, K.E., Jackai, L.E.N. (Eds.), Advances in cowpea research. International Institute of Tropical Agriculture and Japan International Research Center for Agricultural Sciences, Ibadan, pp. 271-284. 
  8. Briere, J.F., Pracros, P., Le Roux, A.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29.  https://doi.org/10.1093/ee/28.1.22
  9. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438.  https://doi.org/10.2307/2402197
  10. Chi, Y., Sakamaki, Y., Tsuda, K., Kusigemati, K., 2005. Effect of temperature on oviposition and adult longevity of the legume pod borer, Maruca virtrata (Fabricius) (Lepidoptera: Crambidae). Jpn. J. Appl. Entomol. Zool. 49, 29-32.  https://doi.org/10.1303/jjaez.2005.29
  11. Chi, Y., Sakamaki, Y., Tsuda, K., Kusigemati, K., 2006. Effects of temperature on the development of legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera, Crambidae). Bull. Fac. Agric., Kagoshima Univ. 56, 19-23. 
  12. Grigolli, J.F.J., Lourencao, A.L.F., Avila, C.J., 2015. Field efficacy of chemical pesticides against Maruca vitrata Fabricius (Lepidoptera: Crambidae) infesting soybean in Brazil. Am. J. Plant Sci. 6, 537-544.  https://doi.org/10.4236/ajps.2015.64058
  13. Hoffmann, K.H., 1985. Metabolic and enzyme adaptation to temperature, in: Hoffmann, K.H. (Ed.), Environmental physiology and biochemistry of insects. Springer, Berlin, Heidelberg. pp. 1-32. 
  14. Huang, C.C., Peng, W.K., 2002. Effect of temperatures on the development of legume pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on Sesbania cannabina. Plant Prot. B. Taipei. 44, 245-248. 
  15. Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34, 1377-1387.  https://doi.org/10.1603/0046-225X-34.6.1377
  16. Jackai, L.E.N., Daoust, R.A., 1986. Insect pests of cowpeas. Ann. Rev. Entomol. 31, 95-119.  https://doi.org/10.1146/annurev.en.31.010186.000523
  17. Jandel Scientific, 1994. TableCurve user's manual. San Rafael, CA.
  18. Jung, J.K., Seo, B.-Y., Park, J.H., Moon, J.-K., Choi, B.-S., Lee, Y.-H., 2007. Developmental characteristics of soybean podworm, Matsumuraeses phaseoli (Lepidoptera: Torticidae) and legume pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on semi-synthehtic artificial diets. Korean J. Appl. Entomol. 46, 393-399.  https://doi.org/10.5656/KSAE.2007.46.3.393
  19. Jung, J.K., Seo, B.Y., Cho, J-.R., Kwon, Y-.H., Kim, G-.H., 2009. Occurrence of lepidopteran insect pests and injury aspects in adzuki bean fields. Korean J. Appl. Entomol. 48, 29-35.  https://doi.org/10.5656/KSAE.2009.48.1.029
  20. Jung, J.K., Seo, B.Y., Park, D.-S., Oh, H.-W., Lee, G.-S., Park, H.-C., Cho, J.R., 2012. Species identification and developmental biology of a red bean pest in Ostrinia sp. (Lepidoptera: Crambidae). J. Appl. Entomol. 51, 469-477.  https://doi.org/10.5656/KSAE.2012.11.0.066
  21. Jung, J.K., Seo, B.Y., Kim, Y., Lee, S.-W., 2016. Can Maruca vitrata (Lepidoptera: Crambidae) over-winter in Suwon area?. Korean J. Appl. Entomol. 55, 439-444.  https://doi.org/10.5656/KSAE.2016.11.0.060
  22. Jung, J.K., Seo, B.Y., Jeong, I.-H., Kim, E.Y., Lee, S.W., 2021. Application timings of insecticides to control the first generation of the Asian corn borer, Ostrinia furnacalis in waxy maize fields. Korean J. Appl. Entomol. 60, 431-448.  https://doi.org/10.5656/KSAE.2021.11.0.041
  23. Kawazu, K., Otuka, A., Adati, T., Tonogouchi, H., Yase, J., 2008. Lepidoptera captured on the East China Sea in 2005 and predicted migration sources. Entomol. Sci. 11, 315-322.  https://doi.org/10.1111/j.1479-8298.2008.00282.x
  24. Kim, D-S., Lee, J-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Model. 162, 145-153.  https://doi.org/10.1016/S0304-3800(02)00402-7
  25. Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56, 1-18.  https://doi.org/10.5656/KSAE.2016.11.0.061
  26. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75.  https://doi.org/10.1093/ee/24.1.68
  27. Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140.  https://doi.org/10.1093/ee/5.6.1133
  28. Margam, V.M., Coates, B.S., Ba, M.N., Sun, W., Binso-Dabire, C.L., Baoua, I., Ishiyaku, M.F., Shukle, J.T., Hellmich, R.L., Covas, F.G., Ramasamy, S., Armstrong, J., Pittendrigh, B.R., Murdock, L.L., 2011. Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Mol. Biol. Rep. 38, 893-903.  https://doi.org/10.1007/s11033-010-0182-3
  29. Pinder III, J.E., Wiener, J.G., Smith, M.H., 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59, 175-179.  https://doi.org/10.2307/1936645
  30. R statistics, 2015. R: A language and environment for statistical computing. R foundation for statistical computing. http://www.r-project.org (accessed 20 February, 2022). 
  31. Ratkowsky, D.A., Reddy, G.V.P., 2017. Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Ann. Entomol. Soc. Am. 110, 302-309.  https://doi.org/10.1093/aesa/saw098
  32. Ratte, H.T., 1985. Temperature and insect development, in: Hoffmann, K.H. (Ed.), Environmental physiology and biochemistry of insects. Springer, Berlin, Heidelberg. pp. 33-66. 
  33. Riley, J.R., Reynolds, D.R., Smith, A.D., Edwards, A.S., Zhang, X.-X., Cheng, X-N., Wang, H.-K., Cheng, J.-Y., Zhai, B.-P., 1995. Observations of the autumn migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and other moths in eastern China. B. Entomol. Res. 85, 397-414.  https://doi.org/10.1017/S0007485300036130
  34. SAS Institute, 2004. SAS System for Window, Release 8.02. SAS Institute, Cary, NC. 
  35. Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719-731.  https://doi.org/10.1016/0022-5193(81)90246-0
  36. Sharma, H.C., 1998. Bionomics, host plant resistance, and management of the legume pod borer, Maruca vitrata - review. Crop Prot. 17, 373-386.  https://doi.org/10.1016/S0261-2194(98)00045-3
  37. Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649-670.  https://doi.org/10.1016/0022-5193(77)90265-X
  38. Shejulpatil, S.J., Kulkarni, S.R., Chavan, A.P., Kute, A.P., Tambe, A.B., 2020. Seasonal incidence of spotted pod borer, Maruca vitrata (Geyer) on pigeonpea. J. Entomol. Zool. Stud. 8, 715-719. 
  39. Shi, P-J., Reddy, G.V.P., Chen, L., Ge, F., 2017. Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (II) two thermodynamic models. Ann. Entomol. Soc. Am. 110, 113-120.  https://doi.org/10.1093/aesa/saw067
  40. Sreekanth, M., Ratnam, M., Seshamahalakshmi, M., Rao, Y.K., Narayana, E., 2015. Population build-up and seasonal abundance of spotted pod borer, Maruca vitrata (Geyer) on pigeonpea (Cajanus cajan (L) Millsp.). J. Appl. Biol. Biotechnol. 3, 43-45. 
  41. Srinivasan, R., Tamo, M., Malini, P., 2021. Emergence of Maruca vitrata as a major pest of food legumes and evolution of management practices in Asia and Africa. Annu. Rev. Entomol. 66, 141-161.  https://doi.org/10.1146/annurev-ento-021220-084539
  42. Taggar, G.K., Singh, R., Cheema, H.K., Singh, P., 2019. Relative abundance, population dynamics and damage potential of spotted pod borer, Maruca vitrata (Fabricius) on early pigenpea in Punjab. Int. J. Trop. Insect Sci. 39, 229-234.  https://doi.org/10.1007/s42690-019-00032-7
  43. Wagner, T.L., Wu, H.-I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, R.N., 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-220.  https://doi.org/10.1093/aesa/77.2.208
  44. Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297.  https://doi.org/10.1115/1.4010337