DOI QR코드

DOI QR Code

Correlation between gray values in cone-beam computed tomography and histomorphometric analysis

  • Najmeh, Anbiaee (Department of Oral and Maxillofacial Radiology, Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences) ;
  • Reihaneh, Shafieian (Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences) ;
  • Farid, Shiezadeh (Department of Periodontology, Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences) ;
  • Mohammadtaghi, Shakeri (Department of Community Medicine and Public Health, Mashhad University of Medical Sciences) ;
  • Fatemeh, Naqipour (Department of Oral and Maxillofacial Radiology, Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences)
  • Received : 2022.03.10
  • Accepted : 2022.07.25
  • Published : 2022.12.31

Abstract

Purpose: The aim of this study was to analyze the relationships between bone density measurements obtained using cone-beam computed tomography (CBCT) and morphometric parameters of bone determined by histomorphometric analysis. Materials and Methods: In this in vivo study, 30 samples from the maxillary bones of 7 sheep were acquired using a trephine. The bone samples were returned to their original sites, and the sheep heads were imaged using CBCT. On the CBCT images, gray values were calculated. In the histomorphometric analysis, the total bone volume, the trabecular bone volume (referred to simply as bone volume), and the trabecular thickness were assessed. Results: Statistical testing showed significant correlations between CBCT gray values and total bone volume (r =0.537, P =0.002), bone volume (r =0.672, P<0.001), and trabecular thickness (r =0.692, P<0.001), as determined via the histomorphometric analysis. Conclusion: The results indicate a significant and acceptable association between CBCT gray values and bone volume, suggesting that CBCT may be used in bone densitometry.

Keywords

Acknowledgement

These authors thank Mashhad University of Medical Sciences for the support.

References

  1. Scarfe WC, Li Z, Aboelmaaty W, Scott SA, Farman AG. Maxillofacial cone beam computed tomography: essence, elements and steps to interpretation. Aust Dent J 2012; 57 Suppl 1: 46-60. https://doi.org/10.1111/j.1834-7819.2011.01657.x
  2. Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol 2015; 44: 20140238.
  3. Shukla S, Chug A, Afrashtehfar KI. Role of cone beam computed tomography in diagnosis and treatment planning in dentistry: an update. J Int Soc Prev Community Dent 2017; 7(Suppl 3): S125-36.
  4. Weiss R 2nd, Read-Fuller A. Cone beam computed tomography in oral and maxillofacial surgery: an evidence-based review. Dent J (Basel) 2019; 7: 52.
  5. Chrcanovic BR, Albrektsson T, Wennerberg A. Bone quality and quantity and dental implant failure: a systematic review and meta-analysis. Int J Prosthodont 2017; 30: 219-37. https://doi.org/10.11607/ijp.5142
  6. Bilhan H, Arat S, Geckili O. How precise is dental volumetric tomography in the prediction of bone density? Int J Dent 2012; 2012: 348908.
  7. Kuroshima S, Kaku M, Ishimoto T, Sasaki M, Nakano T, Sawase T. A paradigm shift for bone quality in dentistry: a literature review. J Prosthodont Res 2017; 61: 353-62. https://doi.org/10.1016/j.jpor.2017.05.006
  8. He RT, Tu MG, Huang HL, Tsai MT, Wu J, Hsu JT. Improving the prediction of the trabecular bone microarchitectural parameters using dental cone-beam computed tomography. BMC Med Imaging 2019; 19: 10.
  9. Jindal M, Lakhwani O, Kapoor S, Chandoke R, Kaur O, Arora B, et al. Correlation between bone histomorphometry and bone strength. Trop J Med Res 2017; 20: 25.
  10. David O, Leretter M, Neagu A. The quality of trabecular bone assessed using cone-beam computed tomography. Rom J Biophys 2014; 24: 227-41.
  11. Rokn AR, Labibzadeh A, Ghohroudi AA, Shamshiri AR, Solhjoo S. Histomorphometric analysis of bone density in relation to tactile sense of the surgeon during dental implant placement. Open Dent J 2018; 12: 46-52. https://doi.org/10.2174/1874210601812010046
  12. Suttapreyasri S, Suapear P, Leepong N. The accuracy of conebeam computed tomography for evaluating bone density and cortical bone thickness at the implant site: micro-computed tomography and histologic analysis. J Craniofac Surg 2018; 29: 2026-31. https://doi.org/10.1097/scs.0000000000004672
  13. Kivovics M, Szabo BT, Nemeth O, Ivanyi D, Trimmel B, Szmirnova I, et al. Comparison between micro-computed tomography and cone-beam computed tomography in the assessment of bone quality and a long-term volumetric study of the augmented sinus grafted with an albumin impregnated allograft. J Clin Med 2020; 9: 303.
  14. Panmekiate S, Ngonphloy N, Charoenkarn T, Faruangsaeng T, Pauwels R. Comparison of mandibular bone microarchitecture between micro-CT and CBCT images. Dentomaxillofac Radiol 2015; 44: 20140322.
  15. Kulah K, Gulsahi A, Kamburoglu K, Geneci F, Ocak M, Celik HH, et al. Evaluation of maxillary trabecular microstructure as an indicator of implant stability by using 2 cone beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127: 247-56. https://doi.org/10.1016/j.oooo.2018.11.014
  16. Todisco M, Trisi P. Bone mineral density and bone histomorphometry are statistically related. Int J Oral Maxillofac Implants 2005; 20: 898-904.
  17. Selvaraj A, Jain RK, Nagi R, Balasubramaniam A. Correlation between gray values of cone-beam computed tomograms and Hounsfield units of computed tomograms: a systematic review and meta-analysis. Imaging Sci Dent 2022; 52: 133-40. https://doi.org/10.5624/isd.20210274
  18. Sghaireen MG, Ganji KK, Alam MK, Srivastava KC, Shrivastava D, Rahman SA, et al. Comparing the diagnostic accuracy of CBCT grayscale values with DXA values for the detection of osteoporosis. Appl Sci (Basel) 2020; 10: 4584.
  19. Payahoo S, Jabbari G. The ability of cone beam computed tomography to predict osteopenia and osteoporosis via radiographic density derived from cervical vertebrae. Int J Sci Res Dent Med Sci 2019; 1: 18-22.
  20. Shokri A, Ghanbari M, Maleki FH, Ramezani L, Amini P, Tapak L. Relationship of gray values in cone beam computed tomography and bone mineral density obtained by dual energy X-ray absorptiometry. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128: 319-31. https://doi.org/10.1016/j.oooo.2019.04.017
  21. Kim DG. Can dental cone beam computed tomography assess bone mineral density? J Bone Metab 2014; 21: 117-26. https://doi.org/10.11005/jbm.2014.21.2.117
  22. Gonzalez-Garcia R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res 2013; 24: 871-9. https://doi.org/10.1111/j.1600-0501.2011.02390.x
  23. Kang SR, Bok SC, Choi SC, Lee SS, Heo MS, Huh KH, et al. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography. J Periodontal Implant Sci 2016; 46: 116-27. https://doi.org/10.5051/jpis.2016.46.2.116
  24. Liang X, Zhang Z, Gu J, Wang Z, Vandenberghe B, Jacobs R, et al. Comparison of micro-CT and cone beam CT on the feasibility of assessing trabecular structures in mandibular condyle. Dentomaxillofac Radiol 2017; 46: 20160435.
  25. Mehralizadeh S, Talaipour AR, Olyaee P, Amiri Siavoshani M. Correlation between tissue densities in computed tomography and three different cone-beam computed tomography units (in vitro). J Res Dent Maxillofac Sci 2020; 5: 13-20. https://doi.org/10.29252/jrdms.5.1.13
  26. Razi T, Niknami M, Alavi Ghazani F. Relationship between Hounsfield unit in CT scan and gray scale in CBCT. J Dent Res Dent Clin Dent Prospects 2014; 8: 107-10.
  27. Shokri A, Ramezani L, Bidgoli M, Akbarzadeh M, Ghazikhanlu-Sani K, Fallahi-Sichani H. Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans. Imaging Sci Dent 2018; 48: 31-9. https://doi.org/10.5624/isd.2018.48.1.31
  28. Khojastepour L, Mohammadzadeh S, Jazayeri M, Omidi M. In vitro evaluation of the relationship between gray scales in digital intraoral radiographs and Hounsfield units in CT scans. J Biomed Phys Eng 2017; 7: 289-98.
  29. Guerra EN, Almeida FT, Bezerra FV, Figueiredo PT, Silva MA, De Luca Canto G, et al. Capability of CBCT to identify patients with low bone mineral density: a systematic review. Dentomaxillofac Radiol 2017; 46: 20160475.
  30. Parsa A, Ibrahim N, Hassan B, van der Stelt P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res 2015; 26: e1-7.
  31. Monje A, Monje F, Gonzalez-Garcia R, Galindo-Moreno P, Rodriguez-Salvanes F, Wang HL. Comparison between microcomputed tomography and cone-beam computed tomography radiologic bone to assess atrophic posterior maxilla density and microarchitecture. Clin Oral Implants Res 2014; 25: 723-8. https://doi.org/10.1111/clr.12133
  32. Wang F, Huang W, Wu Y, Montanero-Fernandez J, Sheridan RA, Wang HL, et al. Accuracy of cone beam computed tomography grayscale density in determining bone architecture in the posterior mandible: an in vivo study with microcomputed tomography validation. Int J Oral Maxillofac Implants 2017; 32: 1074-9. https://doi.org/10.11607/jomi.5518
  33. Van Dessel J, Nicolielo LF, Huang Y, Slagmolen P, Politis C, Lambrichts I, et al. Quantification of bone quality using different cone beam computed tomography devices: accuracy assessment for edentulous human mandibles. Eur J Oral Implantol 2016; 9: 411-24.
  34. England GM, Moon ES, Roth J, Deguchi T, Firestone AR, Beck FM, et al. Conditions and calibration to obtain comparable grey values between different clinical cone beam computed tomography scanners. Dentomaxillofac Radiol 2017; 46: 20160322.
  35. Oliveira ML, Tosoni GM, Lindsey DH, Mendoza K, Tetradis S, Mallya SM. Assessment of CT numbers in limited and medium field-of-view scans taken using Accuitomo 170 and Veraviewepocs 3De cone-beam computed tomography scanners. Imaging Sci Dent 2014; 44: 279-85. https://doi.org/10.5624/isd.2014.44.4.279
  36. Rodrigues AF, Campos MJ, Chaoubah A, Fraga MR, Farinazzo Vitral RW. Use of gray values in CBCT and MSCT images for determination of density: influence of variation of FOV size. Implant Dent 2015; 24: 155-9. https://doi.org/10.1097/ID.0000000000000179
  37. Lindfors N, Lund H, Johansson H, Ekestubbe A. Influence of patient position and other inherent factors on image quality in two different cone beam computed tomography (CBCT) devices. Eur J Radiol Open 2017; 4: 132-7. https://doi.org/10.1016/j.ejro.2017.10.001
  38. Candemil AP, Salmon B, Freitas DQ, Ambrosano GM, Haiter-Neto F, Oliveira ML. Metallic materials in the exomass impair cone-beam CT voxel values. Dentomaxillofac Radiol 2018; 47: 20180011.
  39. Corpas Ldos S, Jacobs R, Quirynen M, Huang Y, Naert I, Duyck J. Peri-implant bone tissue assessment by comparing the outcome of intra-oral radiograph and cone beam computed tomography analyses to the histological standard. Clin Oral Implants Res 2011; 22: 492-9.   https://doi.org/10.1111/j.1600-0501.2010.02029.x