DOI QR코드

DOI QR Code

Temporal Transcriptome Analysis of SARS-CoV-2-Infected Lung and Spleen in Human ACE2-Transgenic Mice

  • Jung Ah, Kim (Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Sung-Hee, Kim (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Jung Seon, Seo (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Hyuna, Noh (Korea Mouse Phenotyping Center, Seoul National University) ;
  • Haengdueng, Jeong (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Jiseon, Kim (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Donghun, Jeon (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Jeong Jin, Kim (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Dain, On (Korea Mouse Phenotyping Center, Seoul National University) ;
  • Suhyeon, Yoon (Korea Mouse Phenotyping Center, Seoul National University) ;
  • Sang Gyu, Lee (Interdisciplinary Program for Bioinformatics, Seoul National University) ;
  • Youn Woo, Lee (Department of Nuclear Medicine, Seoul National University Bundang Hospital) ;
  • Hui Jeong, Jang (Department of Nuclear Medicine, Seoul National University Bundang Hospital) ;
  • In Ho, Park (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Jooyeon, Oh (Department of Microbiology, Yonsei University College of Medicine) ;
  • Sang-Hyuk, Seok (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University) ;
  • Yu Jin, Lee (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University) ;
  • Seung-Min, Hong (Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Se-Hee, An (Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Joon-Yong, Bae (Department of Microbiology, Institute for Viral Diseases, Biosafety Center, Korea University College of Medicine) ;
  • Jung-ah, Choi (Science Unit, International Vaccine Institute) ;
  • Seo Yeon, Kim (Preclinical Research Center, Seoul National University Bundang Hospital) ;
  • Young Been, Kim (Preclinical Research Center, Seoul National University Bundang Hospital) ;
  • Ji-Yeon, Hwang (Preclinical Research Center, Seoul National University Bundang Hospital) ;
  • Hyo-Jung, Lee (Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Hong Bin, Kim (Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Dae Gwin, Jeong (Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Daesub, Song (Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Manki, Song (Science Unit, International Vaccine Institute) ;
  • Man-Seong, Park (Department of Microbiology, Institute for Viral Diseases, Biosafety Center, Korea University College of Medicine) ;
  • Kang-Seuk, Choi (Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Jun Won, Park (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University) ;
  • Jun-Won, Yun (Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University) ;
  • Jeon-Soo, Shin (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Ho-Young, Lee (Department of Nuclear Medicine, Seoul National University Bundang Hospital) ;
  • Jun-Young, Seo (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Ki Taek, Nam (Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Heon Yung, Gee (Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Je Kyung, Seong (Korea Mouse Phenotyping Center, Seoul National University)
  • 투고 : 2022.06.02
  • 심사 : 2022.08.05
  • 발행 : 2022.12.31

초록

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and potentially fatal virus. So far, most comprehensive analyses encompassing clinical and transcriptional manifestation have concentrated on the lungs. Here, we confirmed evident signs of viral infection in the lungs and spleen of SARS-CoV-2-infected K18-hACE2 mice, which replicate the phenotype and infection symptoms in hospitalized humans. Seven days post viral detection in organs, infected mice showed decreased vital signs, leading to death. Bronchopneumonia due to infiltration of leukocytes in the lungs and reduction in the spleen lymphocyte region were observed. Transcriptome profiling implicated the meticulous regulation of distress and recovery from cytokine-mediated immunity by distinct immune cell types in a time-dependent manner. In lungs, the chemokine-driven response to viral invasion was highly elevated at 2 days post infection (dpi). In late infection, diseased lungs, post the innate immune process, showed recovery signs. The spleen established an even more immediate line of defense than the lungs, and the cytokine expression profile dropped at 7 dpi. At 5 dpi, spleen samples diverged into two distinct groups with different transcriptome profile and pathophysiology. Inhibition of consecutive host cell viral entry and massive immunoglobulin production and proteolysis inhibition seemed that one group endeavored to survive, while the other group struggled with developmental regeneration against consistent viral intrusion through the replication cycle. Our results may contribute to improved understanding of the longitudinal response to viral infection and development of potential therapeutics for hospitalized patients affected by SARS-CoV-2.

키워드

과제정보

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (2020M3A9D5A01082439 and 2018R1A5A2025079, to H.Y.G., 2016M3A9D5A01952416 to K.T.N., and Bio & Medical Technology Development Program 2021M3H9A1038083 to K.T.N.).

참고문헌

  1. Abdelrahman, Z., Li, M., and Wang, X. (2020). Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A respiratory viruses. Front. Immunol. 11, 552909.
  2. Badou, A., Basavappa, S., Desai, R., Peng, Y.Q., Matza, D., Mehal, W.Z., Kaczmarek, L.K., Boulpaep, E.L., and Flavell, R.A. (2005). Requirement of voltage-gated calcium channel beta4 subunit for T lymphocyte functions. Science 307, 117-121. https://doi.org/10.1126/science.1100582
  3. Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., Qi, F., et al. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830-833. https://doi.org/10.1038/s41586-020-2312-y
  4. Blanco-Melo, D., Nilsson-Payant, B.E., Liu, W.C., Uhl, S., Hoagland, D., Moller, R., Jordan, T.X., Oishi, K., Panis, M., Sachs, D., et al. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026
  5. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507-513. https://doi.org/10.1016/s0140-6736(20)30211-7
  6. Cleary, S.J., Pitchford, S.C., Amison, R.T., Carrington, R., Robaina Cabrera, C.L., Magnen, M., Looney, M.R., Gray, E., and Page, C.P. (2020). Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology. Br. J. Pharmacol. 177, 4851-4865. https://doi.org/10.1111/bph.15143
  7. Cui, J., Li, F., and Shi, Z.L. (2019). Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181-192. https://doi.org/10.1038/s41579-018-0118-9
  8. de Wit, E., van Doremalen, N., Falzarano, D., and Munster, V.J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523-534. https://doi.org/10.1038/nrmicro.2016.81
  9. Esposito, S., D'Abrosca, G., Antolak, A., Pedone, P.V., Isernia, C., and Malgieri, G. (2022). Host and viral zinc-finger proteins in COVID-19. Int. J. Mol. Sci. 23, 3711.
  10. Harrison, A.G., Lin, T., and Wang, P. (2020). Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 41, 1100-1115. https://doi.org/10.1016/j.it.2020.10.004
  11. Heister, P.M. and Poston, R.N. (2020). Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol. Res. Perspect. 8, e00653.
  12. Israelow, B., Song, E., Mao, T., Lu, P., Meir, A., Liu, F., Alfajaro, M.M., Wei, J., Dong, H., Homer, R.J., et al. (2020). Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J. Exp. Med. 217, e20201241.
  13. Jiang, R.D., Liu, M.Q., Chen, Y., Shan, C., Zhou, Y.W., Shen, X.R., Li, Q., Zhang, L., Zhu, Y., Si, H.R., et al. (2020). Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50-58.e8. https://doi.org/10.1016/j.cell.2020.05.027
  14. Kirtipal, N., Bharadwaj, S., and Kang, S.G. (2020). From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect. Genet. Evol. 85, 104502.
  15. Masters, P.S. (2006). The molecular biology of coronaviruses. Adv. Virus Res. 66, 193-292. https://doi.org/10.1016/S0065-3527(06)66005-3
  16. McClain, M.T., Constantine, F.J., Henao, R., Liu, Y., Tsalik, E.L., Burke, T.W., Steinbrink, J.M., Petzold, E., Nicholson, B.P., Rolfe, R., et al. (2021). Dysregulated transcriptional responses to SARS-CoV-2 in the periphery. Nat. Commun. 12, 1079.
  17. McCray, P.B., Jr., Pewe, L., Wohlford-Lenane, C., Hickey, M., Manzel, L., Shi, L., Netland, J., Jia, H.P., Halabi, C., Sigmund, C.D., et al. (2007). Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813-821. https://doi.org/10.1128/JVI.02012-06
  18. Mihelic, M., Teuscher, C., Turk, V., and Turk, D. (2006). Mouse stefins A1 and A2 (Stfa1 and Stfa2) differentiate between papain-like endo- and exopeptidases. FEBS Lett. 580, 4195-4199. https://doi.org/10.1016/j.febslet.2006.06.076
  19. Mohamadian, M., Chiti, H., Shoghli, A., Biglari, S., Parsamanesh, N., and Esmaeilzadeh, A. (2021). COVID-19: virology, biology and novel laboratory diagnosis. J. Gene Med. 23, e3303.
  20. Moreau, G.B., Burgess, S.L., Sturek, J.M., Donlan, A.N., Petri, W.A., and Mann, B.J. (2020). Evaluation of K18-hACE2 mice as a model of SARS-CoV-2 infection. Am. J. Trop. Med. Hyg. 103, 1215-1219. https://doi.org/10.4269/ajtmh.20-0762
  21. Okeke, E.B. and Uzonna, J.E. (2019). The pivotal role of regulatory T cells in the regulation of innate immune cells. Front. Immunol. 10, 680.
  22. Oladunni, F.S., Park, J.G., Pino, P.A., Gonzalez, O., Akhter, A., Allue-Guardia, A., Olmo-Fontanez, A., Gautam, S., Garcia-Vilanova, A., Ye, C., et al. (2020). Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat. Commun. 11, 6122.
  23. Pairo-Castineira, E., Clohisey, S., Klaric, L., Bretherick, A.D., Rawlik, K., Pasko, D., Walker, S., Parkinson, N., Fourman, M.H., Russell, C.D., et al. (2021). Genetic mechanisms of critical illness in COVID-19. Nature 591, 92-98. https://doi.org/10.1038/s41586-020-03065-y
  24. Park, S.H. (2021). An impaired inflammatory and innate immune response in COVID-19. Mol. Cells 44, 384-391. https://doi.org/10.14348/molcells.2021.0068
  25. Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., and Stohr, K. (2003). The severe acute respiratory syndrome. N. Engl. J. Med. 349, 2431-2441. https://doi.org/10.1056/NEJMra032498
  26. Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., Kunpeng, L., and Jingqiang, Z. (2004). The life cycle of SARS coronavirus in Vero E6 cells. J. Med. Virol. 73, 332-337. https://doi.org/10.1002/jmv.20095
  27. Rha, M.S. and Shin, E.C. (2021). Activation or exhaustion of CD8(+) T cells in patients with COVID-19. Cell. Mol. Immunol. 18, 2325-2333. https://doi.org/10.1038/s41423-021-00750-4
  28. Sturm, G., Finotello, F., and List, M. (2020). Immunedeconv: an R package for unified access to computational methods for estimating immune cell fractions from bulk RNA-sequencing data. Methods Mol. Biol. 2120, 223-232. https://doi.org/10.1007/978-1-0716-0327-7_16
  29. Tau, G.Z., von der Weid, T., Lu, B., Cowan, S., Kvatyuk, M., Pernis, A., Cattoretti, G., Braunstein, N.S., Coffman, R.L., and Rothman, P.B. (2000). Interferon gamma signaling alters the function of T helper type 1 cells. J. Exp. Med. 192, 977-986. https://doi.org/10.1084/jem.192.7.977
  30. Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  31. Wan, Y., Shang, J., Graham, R., Baric, R.S., and Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94, e00127-20.
  32. Wen, W., Su, W., Tang, H., Le, W., Zhang, X., Zheng, Y., Liu, X., Xie, L., Li, J., Ye, J., et al. (2020). Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 6, 31.
  33. Winkler, E.S., Bailey, A.L., Kafai, N.M., Nair, S., McCune, B.T., Yu, J., Fox, J.M., Chen, R.E., Earnest, J.T., Keeler, S.P., et al. (2020). SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327-1335. https://doi.org/10.1038/s41590-020-0778-2
  34. Wolfel, R., Corman, V.M., Guggemos, W., Seilmaier, M., Zange, S., Muller, M.A., Niemeyer, D., Jones, T.C., Vollmar, P., Rothe, C., et al. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465-469. https://doi.org/10.1038/s41586-020-2196-x
  35. Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian, J.H., Pei, Y.Y., et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269. https://doi.org/10.1038/s41586-020-2008-3
  36. Xu, X.W., Wu, X.X., Jiang, X.G., Xu, K.J., Ying, L.J., Ma, C.L., Li, S.B., Wang, H.Y., Zhang, S., Gao, H.N., et al. (2020). Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ 368, m606.
  37. Yinda, C.K., Port, J.R., Bushmaker, T., Offei Owusu, I., Purushotham, J.N., Avanzato, V.A., Fischer, R.J., Schulz, J.E., Holbrook, M.G., Hebner, M.J., et al. (2021). K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog. 17, e1009195.
  38. Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287. https://doi.org/10.1089/omi.2011.0118
  39. Zhao, M.M., Yang, W.L., Yang, F.Y., Zhang, L., Huang, W.J., Hou, W., Fan, C.F., Jin, R.H., Feng, Y.M., Wang, Y.C., et al. (2021). Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target. Ther. 6, 134.
  40. Zheng, X.S., Wang, Q., Min, J., Shen, X.R., Li, Q., Zhao, Q.C., Wang, X., Jiang, R.D., Geng, R., Chen, Y., et al. (2022). Single-cell landscape of lungs reveals key role of neutrophil-mediated immunopathology during lethal SARS-CoV-2 infection. J. Virol. 96, e0003822.
  41. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727-733.  https://doi.org/10.1056/nejmoa2001017