DOI QR코드

DOI QR Code

아세틸화 키토산 표면에서 의사체액에 의한 수산화인회석 결정의 생성

In-situ Crystalline Formation of Nano-hydroxyapatite Using Simulated Body Fluids on the Surface of Acetylated Chitosan

  • 김홍성 (부산대학교 바이오소재과학과)
  • Kim, Hong Sung (Department of Biomaterial Science, Pusan National University)
  • 투고 : 2022.01.24
  • 심사 : 2022.02.17
  • 발행 : 2022.02.28

초록

Hydroxyapatite/chitosan composites are being researched as useful biomaterials for bone repair and regeneration. In order to make a biomimetic composite, the in vitro formation of apatite on the surface of the acetylated chitosan film using a simulated body fluid was tested. The formation and in-situ crystallization behavior of hydroxyapatite as a function of the degree of acetylation was investigated. The surface of the acetylated chitosan was densely covered by forming a cluster of a plate-shaped crystalline phase with a thickness of approximately 20 nm, and the crystalline cluster was identified with apatite, including hydroxyapatite. The closer the acetylation rate of chitosan was to 50%, the larger were the amount of crystalline phases formed, and the Ca/P ratio gradually increased to reach 1.67 of hydroxyapatite. As the ratio of glucosamine and acetylglucosamine in chitosan became identical, the formation of apatite was maximized and hydroxyapatite accounted for most of them.

키워드

과제정보

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

참고문헌

  1. H. Shi, Z. Zhou, W. Li, Y. Fan, Z. Li, and J. Wei, "Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction", Crystals, 2021, 11, 149-166. https://doi.org/10.3390/cryst11020149
  2. M. Du, J. Chen, K. Liu, H. Xing, and C. Song, "Recent Advances in Biomedical Engineering of Nano-Hydroxyapatite Including Dentistry, Cancer Treatment and Bone Repair", Compos. Part B, 2021, 215, 108790. https://doi.org/10.1016/j.compositesb.2021.108790
  3. H. Liu, H. Li, W. Cheng, Y. Yang, M. Zhu, and C. Zhou, "Novel Injectable Calcium Phosphate/Chitosan Composites for Bone Substitute Materials", Acta Biomaterialia, 2006, 2, 557-565. https://doi.org/10.1016/j.actbio.2006.03.007
  4. J. Chen, P. Pan, Y. Zhang, S. Zhong, and Q. Zhang, "Preparation of Chitosan/Nano Hydroxyapatite Organic-Inorganic Hybrid Microspheres for Bone Repair", Colloids and Surfaces B: Biointerfaces, 2015, 134, 401-407. https://doi.org/10.1016/j.colsurfb.2015.06.072
  5. Y. Zhai, F. Z. Cui, and Y. Wang, "Formation of Nano- Hydroxyapatite on Recombinant Human-like Collagen Fibrils", Current Appl. Phys., 2005, 5, 429-432. https://doi.org/10.1016/j.cap.2005.01.004
  6. G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, and S. Ryu, "Poly-L-lactic Acid/Hydroxyapatite Hybrid Membrane for Bone Tissue Regeneration", J. Biomed. Mater. Res. Part A, 2007, 82A, 445-454. https://doi.org/10.1002/jbm.a.31166
  7. X. Xiao, R. Liu, Q. Huang, and X. Ding, "Preparation and Characterization of Hydroxyapatite/Polycaprolactone-Chitosan Composites", J. Mater. Sci.: Mater. Med., 2009, 20, 2375-2383. https://doi.org/10.1007/s10856-009-3810-5
  8. V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves, and R. L. Reis, "Hydroxyapatite Reinforced Chitosan and Polyester Blends for Biomedical Applications", Macromol. Mater. Eng., 2005, 290, 1157-1165. https://doi.org/10.1002/mame.200500163
  9. Y. Hidaka, M. Ito, K. Mori, H. Yagasaki, and A. H. Kafrawy, "Histopathological and Immunohistochemical Studies of Membranes of Deacetylated Chitin Derivatives Implanted over Rat Calvaria", J. Biomed. Mater. Res., 1999, 46, 418-423. https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<418::AID-JBM15>3.0.CO;2-T
  10. B. M. Chesnutt, Y. Yuan, N. Brahmandam, Y. Yang, J. L. Ong, W. O. Haggard, and J. D. Bumgardner, "Characterization of Biomimetic Calcium Phosphate on Phosphorylated Chitosan Films", J. Biomed. Mater. Res., 2007, 82A, 343-353. https://doi.org/10.1002/jbm.a.31070
  11. M. L. Martins, T. S. Pinto, A. M. Gomes, J. P. R. L. L. Parra, G. C. Franchi Jr., W. F. Zambuzzi, and C. G. Rodrigues, "Immobilization of Paclitaxel on Hydroxyapatite for Breast Cancer Investigations", Langmuir 2020, 36, 8723-8732. https://doi.org/10.1021/acs.langmuir.0c00868
  12. B. Gieroba, A. Przekora, G. Kalisz, P. Kazimierczak, C. L. Song, M. Wojcik, G. Ginalska, S. G. Kazarian, and A. Sroka- Bartnicka, "Collagen Maturity and Mineralization in Mesenchymal Stem Cells Cultured on the Hydroxyapatite- Based Bone Scaffold Analyzed by ATR-FTIR Spectroscopic Imaging", Mater. Sci. Eng. C, 2021, 119, 111634. https://doi.org/10.1016/j.msec.2020.111634
  13. J. Redepenning, G. Venkataraman, J. Chen, and N. Stafford, "Electrochemical Preparation of Chitosan/Hydroxyapatite Composite Coatings on Titanium Substrates", J. Biomed. Mater. Res., 2003, 66A, 411-416. https://doi.org/10.1002/jbm.a.10571
  14. Z. Ansari, M. Kalantar, A. Soriente, I. Fasolino, M. Kharaziha, L. Ambrosio, and M. G. Raucci, "In-situ Synthesis and Characterization of Chitosan/Hydroxyapatite Nanocomposite Coatings to Improve the Bioactive Properties of Ti6Al4V Substrates", Materials, 2020, 13, 3772-3789. https://doi.org/10.3390/ma13173772
  15. W. M. Alsamolly, "Comparative Assessment of Remineralizing Potential of Recent Biomimetic Remineralizing Agents on Sub-surface Carious Lesions: An In Vitro Study", Egyptian Dental Journal, 2021, 67, 1711-1722. https://doi.org/10.21608/edj.2021.54494.1427
  16. A. R. Costa-Pinto, A. L. Lemos, F. K. Tavaria, and M. Pintado, "Chitosan and Hydroxyapatite Based Biomaterials to Circumvent Periprosthetic Joint Infections", Materials, 2021, 14, 804-823. https://doi.org/10.3390/ma14040804
  17. S. Balhuc, R. Campian, A. Labunet, M. Negucioiu, S. Buduru, and A. Kui, "Dental Applications of Systems Based on Hydroxyapatite Nanoparticles - An Evidence-Based Update", Crystals, 2021, 11, 674-692. https://doi.org/10.3390/cryst11060674
  18. I. V. Fadeeva, S. M. Barinov, A. Y. Fedotov, and V. S. Komlev, "Interactions of Calcium Phosphates with Chitosan", Doklady Chemistry, 2011, 441, 387-390. https://doi.org/10.1134/S0012500811120044
  19. A. Rogina, M. Ivankovic, and H. Ivankovic, "Preparation and Characterization of Nano-Hydroxyapatite within Chitosan Matrix", Mater. Sci. Eng. C, 2013, 33, 4539-4544. https://doi.org/10.1016/j.msec.2013.07.008
  20. R. Kumar, K. H. Prakash, P. Cheang, L. Gower, and K. A. Khor, "Chitosan-Mediated Crystallization and Assembly of Hydroxyapatite Nanoparticles into Hybrid Nanostructured Films", J. R. Soc. Interface, 2008, 5, 427-439. https://doi.org/10.1098/rsif.2007.1141
  21. J. Chen, K. Nan, S. Yin, Y. Wang, T. Wu, and Q. Zhang, "Characterization and Biocompatibility of Nanohybrid Scaffold Prepared via In Situ Crystallization of Hydroxyapatite in Chitosan Matrix", Colloids and Surfaces B: Biointerfaces, 2010, 81, 640-647. https://doi.org/10.1016/j.colsurfb.2010.08.017
  22. Y. Hu, J. Chen, T. Fan, Y. Zhang, Y. Zhao, X. Shi, and Q. Zhang, "Biomimetic Mineralized Hierarchical Hybrid Scaffolds Based on In situ Synthesis of Nano-Hydroxyapatite/Chitosan/ Chondroitin Sulfate/Hyaluronic Acid for Bone Tissue Engineering", Colloids and Surfaces B: Biointerfaces, 2017, 157, 93-100. https://doi.org/10.1016/j.colsurfb.2017.05.059
  23. D. Huang, M. Xu, L. Niu, M. Perez, J. Du, Y. Wei, Y. Hu, X. Lian, and W. Chen, "In Situ Biomimetic Formation of Nano- Hydroxyapatite Crystals on Chitosan Microspheres", Polym. Adv. Technol., 2020, 31, 36-43. https://doi.org/10.1002/pat.4745
  24. C.-H. Lin, Y.-S. Chen, W.-L. Huang, T.-C. Hung, and T.-C. Wen, "Hydroxyapatite Formation with the Interface of Chitin and Chitosan", J. Taiwan Inst. Chem. Eng., 2021, 118, 294-300. https://doi.org/10.1016/j.jtice.2021.01.004
  25. J. Chen, B. Chu, and B. S. Hsiao, "Mineralization of Hydroxyapatite in Electrospun Nanofibrous Poly(L-lactic acid) Scaffolds", J. Biomed. Mater. Res., 2006, 79A, 307-317. https://doi.org/10.1002/jbm.a.30799
  26. S.-H. Rhee and J. Tanaka, "Hydroxyapatite Formation on Cellulose Cloth Induced by Citric Acid", J. Mater. Sci.: Mater. Med., 2000, 11, 449-452. https://doi.org/10.1023/A:1008992009826
  27. A. O. Serhiienko, T. A. Dontsova, T. Y. Mitchenko, S. V. Nahirniak, O. I. Yanushevska, and A. V. Lapinskyi, "Synthesis of Hydroxyapatite Using Various Saccharate Types", J. Chem. Technol., 2021, 29, 10-18. https://doi.org/10.15421/082103
  28. S.-H. Rhee and J. Tanaka, "Effect of Citric Acid on the Nucleation of Hydroxyapatite in a Simulated Body Fluid", Biomaterials, 1999, 20, 2155-2160. https://doi.org/10.1016/S0142-9612(99)00118-0
  29. M. M. Beppu, R. S. Vieira, C. G. Aimoli, and C. C. Santana, "Crosslinking of Chitosan Membranes Using Glutaraldehyde: Effect on Ion Permeability and Water Absorption", J. Membr. Sci., 2007, 301, 126-130. https://doi.org/10.1016/j.memsci.2007.06.015
  30. P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, 1953, pp.576-580.
  31. Y. Zhang, C. Xue, Y. Xue, R. Gao, and X. Zhang, "Determination of the Degree of Deacetylation of Chitin and Chitosan by X-ray Powder Diffraction", Carbohydr. Res., 2005, 340, 1914-1917. https://doi.org/10.1016/j.carres.2005.05.005
  32. N. A. Peppas in "Biomaterials Science", B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons Eds., 2nd Ed., Elsevier Academic Press, 2004, pp.100-106.
  33. Y. J. Park, K. H. Kim, J. Y. Lee, Y. Ku, S. J. Lee, B. M. Min, and C. P. Chung, "Immobilization of Bone Morphogenetic Protein- 2 on a Nanofibrous Chitosan Membrane for Enhanced Guided Bone Regeneration", Biotechnol. Appl. Biochem., 2006, 43, 17-24. https://doi.org/10.1042/BA20050075
  34. R. Murugan, S. Ramakrishna, and K. P. Rao, "Nanoporous Hydroxy-Carbonate Apatite Scaffold Made of Natural Bone", Mater. Lett., 2006, 60, 2844-2847. https://doi.org/10.1016/j.matlet.2006.01.104
  35. A. S. Posner and F. Betts, "Synthetic Amorphous Calcium Phosphate and Its Relation to Bone Mineral Structure", Acc. Chem. Res., 1975, 8, 273-281. https://doi.org/10.1021/ar50092a003
  36. S. Ucar, S. H. Bjornoy, D. C. Bassett, B. L. Strand, P. Sikorski, and J.-P. Andreassen, "Formation of Hydroxyapatite via Transformation of Amorphous Calcium Phosphate in the Presence of Alginate Additives", Crystal Growth & Design, 2019, 19, 7077-7087. https://doi.org/10.1021/acs.cgd.9b00887
  37. A. Lotsari, A. K. Rajasekharan, M. Halvarsson, and M. Andersson, "Transformation of Amorphous Calcium Phosphate to Bone-like Apatite", Nat. Commun., 2018, 9, 4170. https://doi.org/10.1038/s41467-018-06570-x
  38. E. Toufik, H. Noukrati, S. Abouricha, A. Barroug, and H. Benyoucef, "Novel Biocomposite Based on Functionalized Poorly Crystalline Apatite and Chitosan: A Physicochemical Evaluation", Materials Today: Proceedings, 2021, https://doi.org/10.1016/j.matpr.2021.02.649.
  39. M. Sawada, K. Sridhar, Y. Kanda, and S. Yamanaka, "Pure Hydroxyapatite Synthesis Originating from Amorphous Calcium Carbonate", Scientific Reports, 2021, 11, 11546. https://doi.org/10.1038/s41598-021-91064-y
  40. V. E. Silant'ev, V. S. Egorkin, L. A. Zemskova, S. L. Sinebryukhov, and S. V. Gnedenkov, "Synthesis of Phosphate Phases on Polysaccharide Template", Solid State Phenomena, 2020, 312, 314-318. https://doi.org/10.4028/www.scientific.net/SSP.312.314