Browse > Article
http://dx.doi.org/10.12772/TSE.2022.59.047

In-situ Crystalline Formation of Nano-hydroxyapatite Using Simulated Body Fluids on the Surface of Acetylated Chitosan  

Kim, Hong Sung (Department of Biomaterial Science, Pusan National University)
Publication Information
Textile Science and Engineering / v.59, no.1, 2022 , pp. 47-54 More about this Journal
Abstract
Hydroxyapatite/chitosan composites are being researched as useful biomaterials for bone repair and regeneration. In order to make a biomimetic composite, the in vitro formation of apatite on the surface of the acetylated chitosan film using a simulated body fluid was tested. The formation and in-situ crystallization behavior of hydroxyapatite as a function of the degree of acetylation was investigated. The surface of the acetylated chitosan was densely covered by forming a cluster of a plate-shaped crystalline phase with a thickness of approximately 20 nm, and the crystalline cluster was identified with apatite, including hydroxyapatite. The closer the acetylation rate of chitosan was to 50%, the larger were the amount of crystalline phases formed, and the Ca/P ratio gradually increased to reach 1.67 of hydroxyapatite. As the ratio of glucosamine and acetylglucosamine in chitosan became identical, the formation of apatite was maximized and hydroxyapatite accounted for most of them.
Keywords
hydroxyapatite; apatite; acetylated chitosan; SBF; biomimetic composite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Ansari, M. Kalantar, A. Soriente, I. Fasolino, M. Kharaziha, L. Ambrosio, and M. G. Raucci, "In-situ Synthesis and Characterization of Chitosan/Hydroxyapatite Nanocomposite Coatings to Improve the Bioactive Properties of Ti6Al4V Substrates", Materials, 2020, 13, 3772-3789.   DOI
2 W. M. Alsamolly, "Comparative Assessment of Remineralizing Potential of Recent Biomimetic Remineralizing Agents on Sub-surface Carious Lesions: An In Vitro Study", Egyptian Dental Journal, 2021, 67, 1711-1722.   DOI
3 G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, and S. Ryu, "Poly-L-lactic Acid/Hydroxyapatite Hybrid Membrane for Bone Tissue Regeneration", J. Biomed. Mater. Res. Part A, 2007, 82A, 445-454.   DOI
4 J. Chen, P. Pan, Y. Zhang, S. Zhong, and Q. Zhang, "Preparation of Chitosan/Nano Hydroxyapatite Organic-Inorganic Hybrid Microspheres for Bone Repair", Colloids and Surfaces B: Biointerfaces, 2015, 134, 401-407.   DOI
5 Y. Hidaka, M. Ito, K. Mori, H. Yagasaki, and A. H. Kafrawy, "Histopathological and Immunohistochemical Studies of Membranes of Deacetylated Chitin Derivatives Implanted over Rat Calvaria", J. Biomed. Mater. Res., 1999, 46, 418-423.   DOI
6 M. M. Beppu, R. S. Vieira, C. G. Aimoli, and C. C. Santana, "Crosslinking of Chitosan Membranes Using Glutaraldehyde: Effect on Ion Permeability and Water Absorption", J. Membr. Sci., 2007, 301, 126-130.   DOI
7 H. Liu, H. Li, W. Cheng, Y. Yang, M. Zhu, and C. Zhou, "Novel Injectable Calcium Phosphate/Chitosan Composites for Bone Substitute Materials", Acta Biomaterialia, 2006, 2, 557-565.   DOI
8 H. Shi, Z. Zhou, W. Li, Y. Fan, Z. Li, and J. Wei, "Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction", Crystals, 2021, 11, 149-166.   DOI
9 M. Du, J. Chen, K. Liu, H. Xing, and C. Song, "Recent Advances in Biomedical Engineering of Nano-Hydroxyapatite Including Dentistry, Cancer Treatment and Bone Repair", Compos. Part B, 2021, 215, 108790.   DOI
10 Y. Zhai, F. Z. Cui, and Y. Wang, "Formation of Nano- Hydroxyapatite on Recombinant Human-like Collagen Fibrils", Current Appl. Phys., 2005, 5, 429-432.   DOI
11 X. Xiao, R. Liu, Q. Huang, and X. Ding, "Preparation and Characterization of Hydroxyapatite/Polycaprolactone-Chitosan Composites", J. Mater. Sci.: Mater. Med., 2009, 20, 2375-2383.   DOI
12 V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves, and R. L. Reis, "Hydroxyapatite Reinforced Chitosan and Polyester Blends for Biomedical Applications", Macromol. Mater. Eng., 2005, 290, 1157-1165.   DOI
13 A. O. Serhiienko, T. A. Dontsova, T. Y. Mitchenko, S. V. Nahirniak, O. I. Yanushevska, and A. V. Lapinskyi, "Synthesis of Hydroxyapatite Using Various Saccharate Types", J. Chem. Technol., 2021, 29, 10-18.   DOI
14 D. Huang, M. Xu, L. Niu, M. Perez, J. Du, Y. Wei, Y. Hu, X. Lian, and W. Chen, "In Situ Biomimetic Formation of Nano- Hydroxyapatite Crystals on Chitosan Microspheres", Polym. Adv. Technol., 2020, 31, 36-43.   DOI
15 C.-H. Lin, Y.-S. Chen, W.-L. Huang, T.-C. Hung, and T.-C. Wen, "Hydroxyapatite Formation with the Interface of Chitin and Chitosan", J. Taiwan Inst. Chem. Eng., 2021, 118, 294-300.   DOI
16 S.-H. Rhee and J. Tanaka, "Hydroxyapatite Formation on Cellulose Cloth Induced by Citric Acid", J. Mater. Sci.: Mater. Med., 2000, 11, 449-452.   DOI
17 S.-H. Rhee and J. Tanaka, "Effect of Citric Acid on the Nucleation of Hydroxyapatite in a Simulated Body Fluid", Biomaterials, 1999, 20, 2155-2160.   DOI
18 P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, 1953, pp.576-580.
19 Y. J. Park, K. H. Kim, J. Y. Lee, Y. Ku, S. J. Lee, B. M. Min, and C. P. Chung, "Immobilization of Bone Morphogenetic Protein- 2 on a Nanofibrous Chitosan Membrane for Enhanced Guided Bone Regeneration", Biotechnol. Appl. Biochem., 2006, 43, 17-24.   DOI
20 M. L. Martins, T. S. Pinto, A. M. Gomes, J. P. R. L. L. Parra, G. C. Franchi Jr., W. F. Zambuzzi, and C. G. Rodrigues, "Immobilization of Paclitaxel on Hydroxyapatite for Breast Cancer Investigations", Langmuir 2020, 36, 8723-8732.   DOI
21 A. S. Posner and F. Betts, "Synthetic Amorphous Calcium Phosphate and Its Relation to Bone Mineral Structure", Acc. Chem. Res., 1975, 8, 273-281.   DOI
22 M. Sawada, K. Sridhar, Y. Kanda, and S. Yamanaka, "Pure Hydroxyapatite Synthesis Originating from Amorphous Calcium Carbonate", Scientific Reports, 2021, 11, 11546.   DOI
23 Y. Zhang, C. Xue, Y. Xue, R. Gao, and X. Zhang, "Determination of the Degree of Deacetylation of Chitin and Chitosan by X-ray Powder Diffraction", Carbohydr. Res., 2005, 340, 1914-1917.   DOI
24 N. A. Peppas in "Biomaterials Science", B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons Eds., 2nd Ed., Elsevier Academic Press, 2004, pp.100-106.
25 R. Murugan, S. Ramakrishna, and K. P. Rao, "Nanoporous Hydroxy-Carbonate Apatite Scaffold Made of Natural Bone", Mater. Lett., 2006, 60, 2844-2847.   DOI
26 J. Chen, B. Chu, and B. S. Hsiao, "Mineralization of Hydroxyapatite in Electrospun Nanofibrous Poly(L-lactic acid) Scaffolds", J. Biomed. Mater. Res., 2006, 79A, 307-317.   DOI
27 B. M. Chesnutt, Y. Yuan, N. Brahmandam, Y. Yang, J. L. Ong, W. O. Haggard, and J. D. Bumgardner, "Characterization of Biomimetic Calcium Phosphate on Phosphorylated Chitosan Films", J. Biomed. Mater. Res., 2007, 82A, 343-353.   DOI
28 B. Gieroba, A. Przekora, G. Kalisz, P. Kazimierczak, C. L. Song, M. Wojcik, G. Ginalska, S. G. Kazarian, and A. Sroka- Bartnicka, "Collagen Maturity and Mineralization in Mesenchymal Stem Cells Cultured on the Hydroxyapatite- Based Bone Scaffold Analyzed by ATR-FTIR Spectroscopic Imaging", Mater. Sci. Eng. C, 2021, 119, 111634.   DOI
29 J. Redepenning, G. Venkataraman, J. Chen, and N. Stafford, "Electrochemical Preparation of Chitosan/Hydroxyapatite Composite Coatings on Titanium Substrates", J. Biomed. Mater. Res., 2003, 66A, 411-416.   DOI
30 S. Ucar, S. H. Bjornoy, D. C. Bassett, B. L. Strand, P. Sikorski, and J.-P. Andreassen, "Formation of Hydroxyapatite via Transformation of Amorphous Calcium Phosphate in the Presence of Alginate Additives", Crystal Growth & Design, 2019, 19, 7077-7087.   DOI
31 A. Lotsari, A. K. Rajasekharan, M. Halvarsson, and M. Andersson, "Transformation of Amorphous Calcium Phosphate to Bone-like Apatite", Nat. Commun., 2018, 9, 4170.   DOI
32 V. E. Silant'ev, V. S. Egorkin, L. A. Zemskova, S. L. Sinebryukhov, and S. V. Gnedenkov, "Synthesis of Phosphate Phases on Polysaccharide Template", Solid State Phenomena, 2020, 312, 314-318.   DOI
33 R. Kumar, K. H. Prakash, P. Cheang, L. Gower, and K. A. Khor, "Chitosan-Mediated Crystallization and Assembly of Hydroxyapatite Nanoparticles into Hybrid Nanostructured Films", J. R. Soc. Interface, 2008, 5, 427-439.   DOI
34 A. R. Costa-Pinto, A. L. Lemos, F. K. Tavaria, and M. Pintado, "Chitosan and Hydroxyapatite Based Biomaterials to Circumvent Periprosthetic Joint Infections", Materials, 2021, 14, 804-823.   DOI
35 S. Balhuc, R. Campian, A. Labunet, M. Negucioiu, S. Buduru, and A. Kui, "Dental Applications of Systems Based on Hydroxyapatite Nanoparticles - An Evidence-Based Update", Crystals, 2021, 11, 674-692.   DOI
36 I. V. Fadeeva, S. M. Barinov, A. Y. Fedotov, and V. S. Komlev, "Interactions of Calcium Phosphates with Chitosan", Doklady Chemistry, 2011, 441, 387-390.   DOI
37 J. Chen, K. Nan, S. Yin, Y. Wang, T. Wu, and Q. Zhang, "Characterization and Biocompatibility of Nanohybrid Scaffold Prepared via In Situ Crystallization of Hydroxyapatite in Chitosan Matrix", Colloids and Surfaces B: Biointerfaces, 2010, 81, 640-647.   DOI
38 E. Toufik, H. Noukrati, S. Abouricha, A. Barroug, and H. Benyoucef, "Novel Biocomposite Based on Functionalized Poorly Crystalline Apatite and Chitosan: A Physicochemical Evaluation", Materials Today: Proceedings, 2021, https://doi.org/10.1016/j.matpr.2021.02.649.   DOI
39 A. Rogina, M. Ivankovic, and H. Ivankovic, "Preparation and Characterization of Nano-Hydroxyapatite within Chitosan Matrix", Mater. Sci. Eng. C, 2013, 33, 4539-4544.   DOI
40 Y. Hu, J. Chen, T. Fan, Y. Zhang, Y. Zhao, X. Shi, and Q. Zhang, "Biomimetic Mineralized Hierarchical Hybrid Scaffolds Based on In situ Synthesis of Nano-Hydroxyapatite/Chitosan/ Chondroitin Sulfate/Hyaluronic Acid for Bone Tissue Engineering", Colloids and Surfaces B: Biointerfaces, 2017, 157, 93-100.   DOI