DOI QR코드

DOI QR Code

RING ISOMORPHISMS BETWEEN CLOSED STRINGS VIA HOMOLOGICAL MIRROR SYMMETRY

  • 투고 : 2021.07.12
  • 심사 : 2021.12.31
  • 발행 : 2022.03.01

초록

We investigate how closed string mirror symmetry is related to homological mirror symmetry, under the presence of an explicit geometric mirror functor.

키워드

과제정보

This work was supported by the Soongsil University Research Fund (New Professor Research Support) of 2020.

참고문헌

  1. L. Amorim, C.-H. Cho, H. Hong, and S.-C. Lau, Big quantum cohomology of orbifold spheres, arXiv:2002.11080.
  2. V. V. Batyrev, Quantum cohomology rings of toric manifolds, Ast'erisque No. 218 (1993), 9-34.
  3. C.-H. Cho, H. Hong, and S.-C. Lau, Localized mirror functor for Lagrangian immersions, and homological mirror symmetry for ℙ1a,b,c, J. Differential Geom. 106 (2017), no. 1, 45-126. http://projecteuclid.org/euclid.jdg/1493172094
  4. C.-H. Cho, H. Hong, and S.-C. Lau, Localized mirror functor constructed from a Lagrangian torus, J. Geom. Phys. 136 (2019), 284-320. https://doi.org/10.1016/j. geomphys.2018.11.006
  5. T. Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Math. J. 159 (2011), no. 2, 223-274. https://doi.org/10.1215/00127094-1415869
  6. J. D. Evans and Y. Lekili, Generating the Fukaya categories of Hamiltonian Gmanifolds, J. Amer. Math. Soc. 32 (2019), no. 1, 119-162. https://doi.org/10.1090/ jams/909
  7. K. Fukaya, Y. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Studies in Advanced Mathematics, 46.1, American Mathematical Society, Providence, RI, 2009. https://doi.org/10.1090/crmp/049/07
  8. K. Fukaya, Y. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), no. 3, 609-711. https: //doi.org/10.1007/s00029-011-0057-z
  9. K. Fukaya, Y. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory and mirror symmetry on compact toric manifolds, Ast'erisque No. 376 (2016), vi+340 pp.
  10. S. Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, Thesis (Ph.D.)-Massachusetts Institute of Technology. 2012.
  11. E. Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, in Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), 65-78, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan, 1993.
  12. A. B. Givental, Homological geometry and mirror symmetry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), 472-480, Birkhauser, Basel, 1995.
  13. H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016-1079. https://doi.org/10.1016/j.aim. 2009.05.016
  14. E. Segal, The closed state space of affine Landau-Ginzburg B-models, J. Noncommut. Geom. 7 (2013), no. 3, 857-883. https://doi.org/10.4171/JNCG/137
  15. P. Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zurich, 2008. https://doi.org/ 10.4171/063
  16. N. Sheridan, Formulae in noncommutative Hodge theory, J. Homotopy Relat. Struct. 15 (2020), no. 1, 249-299. https://doi.org/10.1007/s40062-019-00251-2