과제정보
This work was supported by the Soongsil University Research Fund (New Professor Research Support) of 2020.
참고문헌
- L. Amorim, C.-H. Cho, H. Hong, and S.-C. Lau, Big quantum cohomology of orbifold spheres, arXiv:2002.11080.
- V. V. Batyrev, Quantum cohomology rings of toric manifolds, Ast'erisque No. 218 (1993), 9-34.
- C.-H. Cho, H. Hong, and S.-C. Lau, Localized mirror functor for Lagrangian immersions, and homological mirror symmetry for ℙ1a,b,c, J. Differential Geom. 106 (2017), no. 1, 45-126. http://projecteuclid.org/euclid.jdg/1493172094
- C.-H. Cho, H. Hong, and S.-C. Lau, Localized mirror functor constructed from a Lagrangian torus, J. Geom. Phys. 136 (2019), 284-320. https://doi.org/10.1016/j. geomphys.2018.11.006
- T. Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Math. J. 159 (2011), no. 2, 223-274. https://doi.org/10.1215/00127094-1415869
- J. D. Evans and Y. Lekili, Generating the Fukaya categories of Hamiltonian Gmanifolds, J. Amer. Math. Soc. 32 (2019), no. 1, 119-162. https://doi.org/10.1090/ jams/909
- K. Fukaya, Y. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Studies in Advanced Mathematics, 46.1, American Mathematical Society, Providence, RI, 2009. https://doi.org/10.1090/crmp/049/07
- K. Fukaya, Y. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), no. 3, 609-711. https: //doi.org/10.1007/s00029-011-0057-z
- K. Fukaya, Y. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory and mirror symmetry on compact toric manifolds, Ast'erisque No. 376 (2016), vi+340 pp.
- S. Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, Thesis (Ph.D.)-Massachusetts Institute of Technology. 2012.
- E. Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, in Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), 65-78, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan, 1993.
- A. B. Givental, Homological geometry and mirror symmetry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), 472-480, Birkhauser, Basel, 1995.
- H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016-1079. https://doi.org/10.1016/j.aim. 2009.05.016
- E. Segal, The closed state space of affine Landau-Ginzburg B-models, J. Noncommut. Geom. 7 (2013), no. 3, 857-883. https://doi.org/10.4171/JNCG/137
- P. Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zurich, 2008. https://doi.org/ 10.4171/063
- N. Sheridan, Formulae in noncommutative Hodge theory, J. Homotopy Relat. Struct. 15 (2020), no. 1, 249-299. https://doi.org/10.1007/s40062-019-00251-2