Acknowledgement
The author is deeply grateful to Paulo Varandas, Thiago Bomfim and Diego Daltro for the incentive and suggestions that helped to improve the structure of the paper.
References
- V. Araujo and V. Pinheiro, Abundance of wild historic behavior, Bull. Braz. Math. Soc. (N.S.) 52 (2021), no. 1, 41-76. https://doi.org/10.1007/s00574-019-00191-8
- L. Barreira, J. Li, and C. Valls, Irregular sets are residual, Tohoku Math. J. (2) 66 (2014), no. 4, 471-489. https://doi.org/10.2748/tmj/1432229192
- L. Barreira, J. Li, and C. Valls, Irregular sets for ratios of Birkhoff averages are residual, Publ. Mat. 58 (2014), suppl., 49-62. http://projecteuclid.org/euclid.pm/1400505225
- L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel J. Math. 116 (2000), 29-70. https://doi.org/10.1007/BF02773211
- M. Bessa, M. J. Torres, and P. Varandas, On the periodic orbits, shadowing and strong transitivity of continuous flows, Nonlinear Anal. 175 (2018), 191-209. https://doi.org/10.1016/j.na.2018.06.002
- T. Bomfim, M. J. Torres, and P. Varandas, Topological features of flows with the reparametrized gluing orbit property, J. Differential Equations 262 (2017), no. 8, 4292- 4313. https://doi.org/10.1016/j.jde.2017.01.008
- T. Bomfim and P. Varandas, The gluing orbit property, uniform hyperbolicity and large deviations principles for semiflows, J. Differential Equations 267 (2019), no. 1, 228-266. https://doi.org/10.1016/j.jde.2019.01.010
- M. Carvalho and P. Varandas, Genericity of historic behavior for maps and flows, Nonlinearity 34 (2021), no. 10, 7030-7044. https://doi.org/10.1088/1361-6544/ac1f77
- J. Franks and M. Misiurewicz, Rotation sets of toral flows, Proc. Amer. Math. Soc. 109 (1990), no. 1, 243-249. https://doi.org/10.2307/2048385
- S. Kiriki, M.-C. Li, and T. Soma, Geometric Lorenz flows with historic behavior, Discrete Contin. Dyn. Syst. 36 (2016), no. 12, 7021-7028. https://doi.org/10.3934/dcds.2016105
- J. Li and M. Wu, Generic property of irregular sets in systems satisfying the specification property, Discrete Contin. Dyn. Syst. 34 (2014), no. 2, 635-645. https://doi.org/10.3934/dcds.2014.34.635
- H. Lima and P. Varandas, On the rotation sets of generic homeomorphisms on the torus 𝕋, Ergodic Theory Dynam. Systems 41 (2021), no. 10, 2983-3022. https://doi.org/10.1017/etds.2020.92
- M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori, J. London Math. Soc. (2) 40 (1989), no. 3, 490-506. https://doi.org/10.1112/jlms/s2-40.3.490
- Y. B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. https://doi.org/10.7208/chicago/9780226662237.001.0001
- Ya. B. Pesin and B. S. Pitskel', Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen. 18 (1984), no. 4, 50-63, 96. https://doi.org/10.1007/BF01076363
- D. Ruelle, Historical behaviour in smooth dynamical systems, in Global analysis of dynamical systems, 63-66, Inst. Phys., Bristol, 2001.
- F. Takens, Orbits with historic behaviour, or non-existence of averages, Nonlinearity 21 (2008), no. 3, T33-T36. https://doi.org/10.1088/0951-7715/21/3/T02
- D. Thompson, The irregular set for maps with the specification property has full topological pressure, Dyn. Syst. 25 (2010), no. 1, 25-51. https://doi.org/10.1080/14689360903156237