Acknowledgement
The author would like to thank the referees for the valuable comments and suggestions in shaping the paper into its present form.
References
- L. Alonso Tarr'io, A. Jerem'ias L'opez, and J. Lipman, Local homology and cohomology on schemes, Ann. Sci. Ecole Norm. Sup. (4) ' 30 (1997), no. 1, 1-39. https://doi.org/10.1016/S0012-9593(97)89914-4
- P. Bahiraei, R. Hafezi, and A. Nematbakhsh, Homotopy category of N-complexes of projective modules, J. Pure Appl. Algebra 220 (2016), no. 6, 2414-2433. https://doi.org/10.1016/j.jpaa.2015.11.012
- M. Dubois-Violette, dN = 0: generalized homology, K-Theory 14 (1998), no. 4, 371-404. https://doi.org/10.1023/A:1007786403736
- W. G. Dwyer and J. P. C. Greenlees, Complete modules and torsion modules, Amer. J. Math. 124 (2002), no. 1, 199-220. https://doi.org/10.1353/ajm.2002.0001
- S. Estrada, Monomial algebras over infinite quivers. Applications to N-complexes of modules, Comm. Algebra 35 (2007), no. 10, 3214-3225. https://doi.org/10.1080/00914030701410211
- H.-B. Foxby and S. Iyengar, Depth and amplitude for unbounded complexes, in Commutative algebra (Grenoble/Lyon, 2001), 119-137, Contemp. Math., 331, Amer. Math. Soc., Providence, RI, 2003. https://doi.org/10.1090/conm/331/05906
- J. Gillespie, The homotopy category of N-complexes is a homotopy category, J. Homotopy Relat. Struct. 10 (2015), no. 1, 93-106. https://doi.org/10.1007/s40062-013-0043-6
- J. Gillespie and M. Hovey, Gorenstein model structures and generalized derived categories, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 675-696. https://doi.org/10.1017/S0013091508000709
- J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion and local homology, J. Algebra 149 (1992), no. 2, 438-453. https://doi.org/10.1016/0021-8693(92)90026-I
- O. Iyama, K. Kato, and J. Miyachi, Derived categories of N-complexes, J. Lond. Math. Soc. (2) 96 (2017), no. 3, 687-716. https://doi.org/10.1112/jlms.12084
- M. M. Kapranov, On the q-analog of homological algebra, Preprint 1996, arXiv:qalg/9611005.
- E. Matlis, The higher properties of R-sequences, J. Algebra 50 (1978), 77-112. https://doi.org/10.1016/0021-8693(78)90176-X
- W. Mayer, A new homology theory. I, II, Ann. of Math. (2) 43 (1942), 370-380, 594-605. https://doi.org/10.2307/1968874
- D. Mirmohades, N-Complexes, Uppsala University, Project Report 2010.
- M. Porta, L. Shaul, and A. Yekutieli, On the homology of completion and torsion, Algebr. Represent. Theory 17 (2014), no. 1, 31-67. https://doi.org/10.1007/s10468-012-9385-8
- P. Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand. 92 (2003), no. 2, 161-180. https://doi.org/10.7146/math.scand.a-14399
- A. Tikaradze, Homological constructions on N-complexes, J. Pure Appl. Algebra 176 (2002), no. 2-3, 213-222. https://doi.org/10.1016/S0022-4049(02)00076-2
- X. Yang and N. Ding, The homotopy category and derived category of N-complexes, J. Algebra 426 (2015), 430-476. https://doi.org/10.1016/j.jalgebra.2014.10.053
- X. Yang and J. Wang, The existence of homotopy resolutions of N-complexes, Homology Homotopy Appl. 17 (2015), no. 2, 291-316. https://doi.org/10.4310/HHA.2015.v17.n2.a14