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COHOMOLOGY OF TORSION AND COMPLETION OF

N-COMPLEXES

Pengju Ma and Xiaoyan Yang

Abstract. We introduce the notions of Koszul N -complex, Čech N -
complex and telescope N -complex, explicit derived torsion and derived

completion functors in the derived category DN (R) of N -complexes using

the Čech N -complex and the telescope N -complex. Moreover, we give

an equivalence between the categories of cohomologically a-torsion N -

complexes and cohomologically a-adic complete N -complexes, and prove
that over a commutative Noetherian ring, via Koszul cohomology, via

RHom cohomology (resp. ⊗ cohomology) and via local cohomology (resp.

derived completion), all yield the same invariant.

Introduction

The notion of N -complexes (graded objects with N -differentials d) was intro-
duced by Mayer [13] in his study of simplicial complexes and its abstract frame-
work of homological theory was studied by Kapranov [11] and Dubois-Violette
[3]. Since then the homological properties of N -complexes have attracted many
authors, for example [2,5,7,8,17–19]. Iyama, Kato and Miyachi [10] studied the
homotopy category KN (B) of N -complexes of an additive category B as well as
the derived category DN (A) of an abelian category A. They proved that both
KN (B) and DN (A) are triangulated, and established a theory of projective
(resp. injective) resolutions and derived functors. They also showed that the
well known equivalences between homotopy category of chain complexes and
their derived categories can be extended to the case of N -complexes.

Let R be a commutative ring and a an ideal of R. Denote by ModR the
category of R-modules. There are two operations associated to this data: the a-
torsion and the a-adic completion. For an R-module M , the a-torsion elements
form the a-torsion submodule Γa(M) ∼= lim−→i>0HomR(R/ai,M) of M . The a-

adic completion of M is Λa(M) := lim←−i>0(R/ai ⊗R M). Therefore, we have
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two additive functors

Γa, Λa : ModR −→ ModR.

The derived category of ModR is denoted by D(R). Then the derived functors

RΓa, LΛa : D(R) −→ D(R)

exist. The right derived functors RΓa have been investigated in great length
already by Grothendieck and others in the context of local cohomology. The
left derived functors LΛa were studied by Matlis [12] and Greenlees-May [9].

Let a be a weakly proregular ideal ofR, this includes the Noetherian case, but
there are other interesting examples. Porta, Shaul and Yekutieli [15] extended
earlier work by Alonso-Jeremias-Lipman [1], Schenzel [16] and Dwyer-Greenlees
[4]. They proved that the derived functors RΓa and LΛa can be computed by
telescope complexes, and established the MGM equivalence, where the letters
“MGM” stand for Matlis, Greenlees and May.

The first aim of this paper is to extend works of Porta, Shaul and Yeku-
tieli to the category of N -complexes. We introduce the definitions of Koszul
N -complex, Čech N -complex and telescope N -complex, and explicit derived
torsion functor and derived completion functor in the derived category DN (R)
of N -complexes using these N -complexes in Section 4 and Section 5, respec-
tively.

Theorem A. Let x = x1, . . . , xd be a weakly proregular sequence in R and a
the ideal generated by x. For any N -complex X, there are functorial quasi-
isomorphisms

RΓa(X)
'−→ Č(x;R)⊗R X ' Tel(x;R)⊗R X,

HomR(Tel(x;R), X)
'−→ LΛa(X).

Denote by DN (R)a-tor and DN (R)a-com the full subcategories of DN (R)
consisting of cohomologically a-torsion N -complexes and cohomologically a-
adic complete N -complexes, respectively (see Definition 6.1). In Section 6, we
show the MGM equivalence in DN (R).

Theorem B. Let a be a weakly proregular ideal of R. Then the functors

RΓa : DN (R)a-com � DN (R)a-tor : LΛa

form an equivalence.

Let a be an ideal in a commutative Noetherian ring R and K the Koszul
complex on a finite set of n generators for a. It is well known that the following
numbers are equal when M is a finitely generated R-module:
• n+ inf{` ∈ Z |H`(K ⊗RM) 6= 0};
• inf{` ∈ Z |Ext`R(R/a,M) 6= 0};
• inf{` ∈ Z |H`

a(M) ∼= 0},
where H`

a(M) is the `th local cohomology module of M with respect to a. Each
of the quantities displayed above is meaningful. These have been proved to be of
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immense utility even in dealing with problems concerning modules alone. Foxby
and Iyengar [6] proved that the numbers obtained from the three formulas above
coincide for any complex. It is natural to ask if these three approaches yield
the same invariant for N -complexes. The second aim of current paper is to
answer the question for any N -complex and consider its dual statement over
commutative Noetherian rings (see Section 7).

1. Preliminaries and basic facts

We assume throughout this paper that all rings are commutative.
This section is devoted to recalling some notions and basic facts which we

need in the later sections. For terminology we shall follow [2,10] and [18].

N-complexes. Fix an integer N > 2. An N -complex X is a sequence of
R-modules

· · · d
n−2

−→ Xn−1 dn−1

−→ Xn dn−→ Xn+1 dn+1

−→ · · ·

satisfying dN = 0. That is, composing any N -consecutive morphisms gives 0.
A morphism f : X → Y of N -complexes is a collection of maps fn : Xn →
Y n making all the rectangles commute. In this way we get a category of N -
complexes, denoted by CN (R).

For any R-module M , j ∈ Z and t = 1, . . . , N , we define

Dj
t (M) : · · · → 0→ Xj−t+1 dj−t+1

−−−−→ · · · d
j−2

−−−→ Xj−1 dj−1

−−−→ Xj → 0→ · · ·

be an N -complex given by Xn = M for all j − t+ 1 6 n 6 j and dn = 1M for
all j − t+ 1 6 n 6 j − 1.

Let X be an N -complex. For n ∈ Z, we define

Znt (X) = Ker(dn+t−1 · · · dn), Bnt (X) = Im(dn−1 · · · dn−t) for t=0, . . . , N,

Cnt (X) = Coker(dn−1 · · · dn−t), Hn
t (X) = Znt (X)/BnN−t(X) for t=1, . . . , N−1.

An N -complex X is called N -acyclic if Hn
t (X) = 0 for all n and t.

Proposition 1.1 ([10]). Let 0→ X → Y → Z → 0 be a short exact sequence
in CN (R). For n ∈ Z and 1 6 t 6 N − 1, there is a long exact sequence of
cohomologies

· · · → H
n−(N−t)
N−t (Z)→ Hn

t (X)→ Hn
t (Y )→ Hn

t (Z)→ Hn+t
N−t(X)→ · · · .

Let X be an N -complex. Define suspension functors Σ,Σ−1 : KN (R) →
KN (R) as follows:

(ΣX)n = Xn+1 ⊕ · · · ⊕Xn+N−1, dΣX =


0 1 0 ··· 0 0
0 0 1 ··· 0 0
...

...
...

...
...

...
0 0 0 ··· 0 1

−dN−1 −dN−2 −dN−3 ··· −d2 −d

 ,
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(Σ−1X)n = Xn−N+1 ⊕ · · · ⊕Xn−1, dΣ−1X =


−d 1 0 ··· 0 0
−d2 0 1 ··· 0 0

...
...

...
...

...
...

−dN−2 0 0 ··· 0 1

−dN−1 0 0 ··· 0 0

 .
Let f : X → Y be a morphism in CN (R). The mapping cone C(f) of f is
defined as

C(f)n = Y n ⊕ (ΣX)n, dnC(f) =


d f 0 ··· 0 0
0 0 1 ··· 0 0
...

...
...

...
...

...
0 0 0 ··· 0 1
0 −dN−1 −dN−2 ··· −d2 −d

 .
Two morphisms f, g : X → Y of N -complexes are called homotopic if there

exists {sn : Xn → Y n−N+1} such that

gn − fn =

N−1∑
i=0

dN−1−isn+idi, ∀ n.

We denote the homotopy category of N -complexes by KN (R). This is a tri-
angulated category, and every exact triangle in KN (R) is isomorphic to the
form

X
f−→ Y

g−→ C(f)
h−→ ΣX,

where X,Y ∈ KN (R) and g =

[ 1
0
...
0

]
, h =

[ 0 1 0 ··· 0 0
0 0 1 ··· 0 0
...

...
...

...
...

...
0 0 0 ··· 0 1

]
.

A morphism f : X → Y is called a quasi-isomorphism if the induced mor-
phism Hi

t(f) : Hi
t(X)→ Hi

t(Y ) is an isomorphism for any i and t = 1, . . . , N−1,
or equivalently if the mapping cone C(f) belongs to Kac

N (R) the full subcat-
egory of KN (R) consisting of N -acyclic N -complexes. The derived category
DN (R) of N -complexes is defined as the quotient category KN (R)/Kac

N (R),
which is also triangulated.

Definition 1.2 ([11]). Let q be a primitive N -th root of 1 (qN = 1), and let
(X, dX), (Y, dY ) be two N -complexes of R-modules.

(a) The q-Hom is the N -complex HomR(X,Y ) defined by

HomR(X,Y )n =
∏
i∈Z

HomR(Xi, Y i+n)

with differential dn(f i) = di+nY f i − qnf i+1diX .
(b) The q-tensor product is the N -complex X ⊗R Y defined by

(X ⊗R Y )n =
∐
i∈Z

(Xi ⊗R Y n−i)

with differential dn(x⊗y) = dX(x)⊗y+q|x|x⊗dY (y), where x, y are supposed
to be homogeneous and |x| denotes the degree of x.
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Remark 1.3. (1) By the definition of q-Hom and q-tensor product of N -compl-
exes and the isomorphism in [10, Theorem 2.4], one can check the following
isomorphisms:

HomR(X,ΣY ) ∼= ΣHomR(X,Y ),

HomR(ΣX,Y ) ∼= HomR(X,Σ−1Y ) ∼= Σ−1HomR(X,Y ),

ΣX ⊗R Y ∼= X ⊗R ΣY ∼= Σ(X ⊗R Y ).

(2) It follows from [14, Corollary 4.5] that (X ⊗R −,HomR(X,−)) forms an
adjoint pair.

Lemma 1.4. For any morphism f : X → Y in CN (R) and any N -complex Z,
one has

(1) HomR(Z,C(f)) ∼= C(HomR(Z, f)).
(2) HomR(C(f), Z) ∼= Σ−1C(HomR(f, Z)).
(3) C(f)⊗R Z ∼= C(f ⊗ Z) and Z ⊗R C(f) ∼= C(Z ⊗ f).

Proof. (1) For any
[
αi

βi

]
∈ HomR(Z,C(f))n ∼= HomR(Z, Y )n⊕HomR(Z,ΣX)n,

we have

dnHomR(Z,C(f))

[
αi

βi

]
= dn+i

C(f)

[
αi

βi

]
− qn

[
αi+1

βi+1

]
diZ

=
[
dn+i
Y fn+i+1

0 dn+i
ΣX

] [
αi

βi

]
− qn

[
αi+1diZ
βi+1diZ

]
=
[
dn+i
Y αi+fn+i+1βi−qnαi+1diZ

dn+i
ΣX βi−qnβi+1diZ

]
=

[
dnHomR(Z,Y ) HomR(Z,f)n+1

0 dnHomR(Z,ΣX)

] [
αi

βi

]
,

which implies that dnHomR(Z,C(f)) =

[
dnHomR(Z,Y ) HomR(Z,f)n+1

0 dnΣHomR(Z,X)

]
, as desired.

(2) For any
[
αi

βi

]
∈ HomR(C(f), Z)n ∼= HomR(Y,Z)n ⊕ HomR(ΣX,Z)n,

since
[
αi

βi

]
corresponds to a morphism [ αi βi ] : Y i ⊕ (ΣX)i → Zn+i we have

dnHomR(C(f),Z)

[
αi

βi

]
= dn+i

Z [ αi βi ]− qn [ αi+1 βi+1 ] diC(f)

= dn+i
Z [ αi βi ]− qn [ αi+1 βi+1 ]

[
diY fi+1

0 diΣX

]
= [ dn+i

Z αi−qnαi+1diY dn+i
Z βi−qnαi+1fi+1−qnβi+1diΣX ]

=

[
dnHomR(Y,Z) 0

−qnHomR(f,Z)i+1 dnHomR(ΣX,Z)

] [
αi

βi

]
,

which implies that dnHomR(C(f),Z) =

[
dnHomR(Z,Y ) 0

−qnHomR(f,Z)i+1 dnΣHomR(Z,X)

]
, as desired.

(3) These follow from

dC(f)⊗RZ =
[
dY⊗RZ f⊗Z

0 dΣX⊗RZ

]
and dZ⊗RC(f) =

[
dZ⊗RY Z⊗f

0 dZ⊗RΣX

]
. �
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Let P be the class of projective R-modules. An N -complex P is called
semi-projective if Pn ∈ P for all n, and every f : P → E is null homotopic
whenever E ∈ Kac

N (R). Let I be the class of injective R-modules. An N -
complex I is called semi-injective if In ∈ I for all n, and every f : E → I is
null homotopic whenever E ∈ Kac

N (R).
Let X be an N -complex. By Lemma 1.4, we have four triangle func-

tors HomR(X,−), HomR(−, X) : KN (R) → KN (Z) and − ⊗R X,X ⊗R − :
KN (R)→ KN (Z). Then [10, Corollary 3.29] yields the following derived func-
tors

RHomR(X,−), RHomR(−, X) : DN (R) −→ DN (Z),

−⊗L
R X, X ⊗L

R − : DN (R) −→ DN (Z).

They can be computed via semi-projective and semi-injective resolution of the
N -complexes by [10, Theorem 3.27], respectively.

Let X be an N -complex. The stupid truncation of X are denoted by trun-
cation τ>i(X) : 0→ Xi+1 → Xi+2 → · · · and τ6i(X) : · · · → Xi−1 → Xi → 0.

For i, j ∈ Z let C
[i,j]
N (R) be the full subcategory of CN (R) whose objects are

the N -complexes concentrated in the degree range [i, j] := {i, . . . , j}. Here is
a useful criterion for quasi-isomorphisms.

Lemma 1.5. Let R and R′ be two rings, F,G : ModR→ CN (R′) two additive
functors, and let η : F → G be a natural transformation. Consider the exten-
sions F,G : CN (R) → CN (R′). Suppose X ∈ CN (R) satisfies the following
conditions:

(1) There are j0, j1 ∈ Z such that F (Xi), G(Xi) ∈ C
[j0,j1]
N (R′) for every

i ∈ Z.
(2) The homomorphism ηXi : F (Xi)→ G(Xi) is a quasi-isomorphism for

every i ∈ Z.

Then ηX : F (X)→ G(X) is a quasi-isomorphism.

Proof. Assume that X is bounded. If X ' Di
1(M) for some R-module M and

i ∈ Z, then this is given. Otherwise the inductive step is done using the short
exact sequence

0→ τ>i(X)→ X → τ6i(X)→ 0

of N -complexes. Now assume X is arbitrary. We prove that Hi
t(ηX) : Hi

t(F (X))
→ Hi

t(G(X)) is an isomorphism for every i ∈ Z and a fixed t. For any i 6 j
set τ[i,j] := τ6j ◦ τ>i. Given an integer i, the morphism Hi

t(ηX) only depends
on the morphism

τ[i−N+t,i+t](ηX) : τ[i−N+t,i+t](F (X))→ τ[i−N+t,i+t](G(X))

of N -complexes. Thus we can replace ηX with ηX′ , where

X ′ = τ[j0+i−N+t,j1+i+t](X).

But X ′ is bounded, so the morphism ηX′ is a quasi-isomorphism. �
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2. The Koszul N-complex

In this section, we give a construction of Koszul N -complexes and compute
the cohomology of a few concrete Koszul N -complexes.

Definition 2.1. Let x be an element in R. The Koszul N -complex on x,
denoted by K•(x;R), is the mapping cone C(x) of x : D0

1(R)→ D0
1(R)

0→ R
1→ R

1→ · · · 1→ R
x→ R→ 0

with R in degrees −N + 1, . . . , 0. Suppose we are given a sequence x =
x1, . . . , xd of elements in R. By induction, the Koszul N -complex on x, de-
noted by K•(x;R), is the mapping cone C(xd) of xd : K•(x1, . . . , xd−1;R) →
K•(x1, . . . , xd−1;R).

One can check that K•(x;R) ∼= K•(x1;R)⊗R · · · ⊗R K•(xd;R).

Example 2.2. Let x, y, z be three elements in R.
(1) For N = 3, the Koszul 3-complex on x is

K•(x;R) : 0→ R
1→ R

x→ R→ 0

with R in degrees −2,−1, 0. The Koszul 3-complex on x, y is

K•(x, y;R) : 0→ R

[
1
−1

]
−−−−→ R2

[
y 0
0 1
−x −x

]
−−−−−−→ R3

[
1 y 0
0 0 1

]
−−−−−→ R2 [ x y ]−−−→ R −→ 0

with the five nonzero modules in degrees −4, . . . , 0. The Koszul 3-complex on
x, y, z is

K•(x, y, z;R) : 0→ R

[
1
−1
1

]
−−−−→ R3


z 0 0
0 1 0
0 0 1
−y −y 0
1 0 −1
0 x x


−−−−−−−−−→ R6


1 z 0 0 0 0
−1 0 z 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −y −y −1 −y 0
0 x x 0 0 −1


−−−−−−−−−−−−−−−−→

R7


y 0 z 0 0 0 0
0 1 0 z 0 0 0
−x −x 0 0 z 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 −x −xy −y −x −y


−−−−−−−−−−−−−−−−−−−−→ R6

[
1 y 0 z 0 0
0 0 1 0 z 0
0 0 0 0 0 1

]
−−−−−−−−−→ R3 [ x y z ]−−−−→ R −→ 0

with the seven nonzero modules in degrees −6, . . . , 0.
(2) For N = 4, the Koszul 4-complex on x is

K•(x;R) : 0→ R
1→ R

1→ R
x→ R→ 0

with R in degrees −3,−2,−1, 0. The Koszul 4-complex on x, y is

K•(x, y;R) : 0→ R

[
1
−1

]
−−−−→ R2

[
1 0
0 1
−1 −1

]
−−−−−−→ R3

 y 0 0
0 1 0
0 0 1
−x −x −x


−−−−−−−−−→

R4

[
1 y 0 0
0 0 1 0
0 0 0 1

]
−−−−−−→ R3

[
1 y 0
0 0 1

]
−−−−−→ R2 [ x y ]−−−→ R −→ 0
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with the seven nonzero modules in degrees −6, . . . , 0. The Koszul 4-complex
on x, y, z is

K•(x, y, z;R) : 0→ R

[
1
−1
1

]
−−−−→ R3


1 0 0
0 1 0
0 0 1
−1 −1 0
1 0 −1
0 1 1


−−−−−−−−−→ R6



z 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−y −y 0 −y 0 0
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 x x x


−−−−−−−−−−−−−−−−→

R10



1 z 0 0 0 0 0 0 0 0
−1 0 z 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 −y −y −y −y 0 −1 −y 0 0
0 1 1 0 0 −1 0 0 −1 0
0 0 0 x x x 0 0 0 −1


−−−−−−−−−−−−−−−−−−−−−−−−−→

R12



1 0 z 0 0 0 0 0 0 0 0 0
0 1 0 z 0 0 0 0 0 0 0 0
−1 −1 0 0 z 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 −y −y −y −1 −y −y 0 −1 −y 0
0 0 x x x 0 0 0 −1 0 0 −1


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

R12



y 0 0 z 0 0 0 0 0 0 0 0
0 1 0 0 z 0 0 0 0 0 0 0
0 0 1 0 0 z 0 0 0 0 0 0
−x −x −x 0 0 0 z 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 −x −xy −xy −y −x −xy −y −x −y


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R10


1 y 0 0 z 0 0 0 0 0
0 0 1 0 0 z 0 0 0 0
0 0 0 1 0 0 z 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


−−−−−−−−−−−−−−→

R6

[
1 y 0 z 0 0
0 0 1 0 z 0
0 0 0 0 0 1

]
−−−−−−−−−→ R3 [ x y z ]−−−−→ R −→ 0

with the ten nonzero modules in degrees −9, . . . , 0.

We next define the Koszul N -complex on N -complexes and Koszul coho-
mology.

Definition 2.3. Let x = x1, . . . , xd be a sequence of elements in R and X an
N -complex. The Koszul N -complex of x on X is the N -complex

K•(x;X) := K•(x;R)⊗R X.
For t = 1, . . . , N − 1, the Koszul cohomology of x on X is

Hj
t (x;X) = Hj

t (K
•(x;X)) for j ∈ Z.

Example 2.4. Let x, y be two elements in R and M an R-module.
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(1) For N = 3, the Koszul 3-complex of x on M is

K•(x;M) : 0→M
1→M

x→M → 0

with M in degrees −2,−1, 0. Therefore, one has that

H−2
1 (x;M) = H−1

2 (x;M) = 0,

H−1
1 (x;M) = H−2

2 (x;M) = (0 :M x),

H0
1(x;M) = H0

2(x;M) = M/xM.

The Koszul 3-complex of x, y on M is

K•(x, y;M) : 0→M

[
1
−1

]
−−−−→M2

[
y 0
0 1
−x −x

]
−−−−−−→M3

[
1 y 0
0 0 1

]
−−−−−→M2 [ x y ]−−−→M −→ 0.

Therefore, we conclude that

H−4
1 (x, y;M) = H−4

2 (x, y;M) = 0,

H−3
1 (x, y;M) = H−3

2 (x, y;M) = (0 :M (x, y)),

H0
1(x, y;M) = H0

2(x, y;M) = M/(x, y)M.

(2) For N = 4, the Koszul 4-complex of x on M is

K•(x;M) : 0→M
1→M

1→M
x→M → 0

with M in degrees −3,−2,−1, 0. Therefore, one has that

H−3
1 (x;M) = H−3

2 (x;M) = H−2
1 (x;M) = H−2

3 (x;M) = H−1
2 (x;M)

= H−1
3 (x;M) = 0,

H−3
3 (x;M) = H−2

2 (x;M) = H−1
1 (x;M) = (0 :M x),

H0
1(x;M) = H0

2(x;M) = H0
3(x;M) = M/xM.

The Koszul 4-complex of x, y on M is

K•(x, y;M) : 0→M

[
1
−1

]
−−−−→M2

[
1 0
0 1
−1 −1

]
−−−−−−→M3

 y 0 0
0 1 0
0 0 1
−x −x −x


−−−−−−−−−→M4

[
1 y 0 0
0 0 1 0
0 0 0 1

]
−−−−−−→

M3

[
1 y 0
0 0 1

]
−−−−−→M2 [ x y ]−−−→M −→ 0.

Therefore, one obtains that

H−6
t (x, y;M) = H−5

t (x, y;M) = 0 for t = 1, 2, 3,

H−4
1 (x, y;M) = H−4

2 (x, y;M) = H−4
3 (x, y;M) = (0 :M (x, y)),

H0
1(x, y;M) = H0

2(x, y;M) = H0
3(x, y;M) = M/(x, y)M.

(3) Let x = x1, . . . , xd be a sequence in R. The Koszul N -complex on x1 is

K•(x1;M) : 0→M
1→M

1→ · · · 1→M
x1→M → 0
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with M in degrees −N + 1, . . . , 0. Therefore, one has that

H−tt (x1;M) = (0 :M x1) for t = 1, . . . , N − 1,

H0
t (x1;M) = M/x1M for t = 1, . . . , N − 1,

H−Nt (x1;M) = 0 for t = 1, . . . , N − 1.

Consider the exact sequence of N -complexes

0→ K•(x1;M)→ K•(x1, x2;M)→ ΣK•(x1;M)→ 0,

which implies that

H−Nt (K•(x1, x2;M)) = (0 :M (x1, x2)) for t = 1, . . . , N − 1,

H0
t (K

•(x1, x2;M)) = M/(x1, x2)M for t = 1, . . . , N − 1,

H−N−tt (K•(x1, x2;M)) = 0 for t = 1, . . . , N − 1.

By induction, one obtains that{
H−kN−tt (x;M) = 0 d = 2k

H−kNt (x;M) = 0 d = 2k − 1
for t = 1, . . . , N − 1,{

H−kNt (x;M) = (0 :M x) d = 2k

H−kN−tt (x;M) = (0 :M x) d = 2k + 1
for t = 1, . . . , N − 1,

H0
t (x;M) = M/xM for t = 1, . . . , N − 1.

Proposition 2.5. Given a sequence of elements x = (x1, . . . , xd) in R, one
has an isomorphism in KN (R)

K•(x;R) ∼= ΣdHomR(K•(x;R), R).

Proof. For x1 there exists an exact triangle R
x1−→ R −→ K•(x1;R) → ΣR in

KN (R). Applying the functor RHomR(−, R) to this triangle, one gets an exact
triangle

Σ−1R→ HomR(K•(x1;R), R)→ R
x1−→ R.

Thus K•(x1;R) ∼= ΣHomR(K•(x1;R), R) in KN (R). For x2 there exists an

exact triangle K•(x1;R)
x2−→ K•(x1;R) −→ K•(x1, x2;R) → ΣK•(x1;R) in

KN (R). Applying the functor RHomR(−, R) to this triangle, one gets an exact
triangle

Σ−1HomR(K•(x1;R), R)→ HomR(K•(x1, x2;R), R)

→ HomR(K•(x1;R), R)→ HomR(K•(x1;R), R),

which implies that K•(x1, x2;R) ∼= Σ2HomR(K•(x1, x2;R), R) in KN (R).
Continuing this process, we obtain the isomorphism we seek. �
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3. The Čech N-complex

For x ∈ R, the localization Rx is obtained by inverting the multiplicatively
closed set {1, x, x2, . . .}. Let ι : R → Rx be the canonical map sending each
r ∈ R to the class of the fraction r/1 ∈ Rx. This section gives a construction
of Čech N -complexes.

Construction 3.1. Let x be an element in R. We have a commutative dia-
gram:

...

��

...

x

��

...

x

��

...

x

��

...

K•(x3;R) : 0

��

// R

x
��

R

x
��

· · · R
x3
//

x
��

R // 0

K•(x2;R) : 0

��

// R

x
��

R

x
��

· · · R
x2
//

x
��

R // 0

K•(x;R) : 0 // R R · · · R
x // R // 0.

Applying the functor HomR(−, R) to this diagram, we have a commutative
diagram:

0 // R
x // R

x
��

· · · R

x
��

R //

x
��

0

0 // R
x2
// R

x
��

· · · R

x
��

R //

x
��

0

0 // R
x3
// R

x��

· · · R

x��

R //

x��

0.

...
...

...
...

In the limit we get the following N -complex

0→ R
ι−→ Rx

1−→ Rx
1−→ · · · 1−→ Rx −→ 0

with modules R in degree 0 and Rx in degrees 1, . . . , N − 1, which is called the
Čech N -complex on x, denoted by Č•(x;R). We also have an exact triangle in
KN (R)

Σ−1Rx → Č•(x;R)→ R
ι−→ Rx.

Let x, y be two elements in R. Then the morphisms

K•(xs;R) : 0

u
��

// R

xy

��

R

xy

��

· · · R
xs
//

xy

��

R //

y

��

0

K•(xs−1;R) : 0 // R R · · · R
xs−1

// R // 0
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K•(xs;R) : 0

v
��

// R

x

��

R

x

��

· · · R
xs
//

x

��

R // 0

K•(xs−1;R) : 0 // R R · · · R
xs−1

// R // 0

induce a commutative diagram in CN (R):

0 // K•(xs;R) //

v
��

K•(xs, ys;R) //

��

ΣK•(xs;R)

Σu
��

// 0

0 // K•(xs−1;R) // K•(xs−1, ys−1;R) // ΣK•(xs−1;R) // 0.

Applying the functor HomR(−, R) to the diagram, one obtains a direct system

HomR(K•(x, y;R), R)→ HomR(K•(x2, y2;R), R)

→ HomR(K•(x3, y3;R), R)→ · · · .

In the limit we get an N -complex lim−→HomR(K•(xs, ys;R), R), which is called

the Čech N -complex on x, y, denoted by Č•(x, y;R). We also have an exact
triangle in KN (R):

Σ−1Č•(x;R)y → Č•(x, y;R)→ Č•(x;R)
ι−→ Č•(x;R)y.

For a sequence x = (x1, . . . , xd) of elements in R, set xs = xs1, . . . , x
s
d and

y = (x1, . . . , xd−1). By induction, the Čech N -complex Č•(x;R) on x is
lim−→HomR(K•(xs;R), R) and we have the following exact triangle in KN (R):

Σ−1Č•(y;R)xd
→ Č•(x;R)→ Č•(y;R)

ι−→ Č•(y;R)xd
.

In fact, by induction, one can obtain the following isomorphism

Č•(x;R) ∼= Č•(x1;R)⊗R · · · ⊗R Č•(xd;R).

Example 3.2. Let x, y be two elements in R.
For N = 3, the Čech 3-complex on x is

Č•(x;R) : 0→ R
ιx→ Rx

1→ Rx → 0.

Therefore, the Čech 3-complex on x, y is

Č•(x, y;R) : 0→ R
[ ιxιy ]
−−−→ Rx ⊕Ry

[ 1 0
ιy 0
0 1

]
−−−−→ Rx ⊕Rxy ⊕Ry[

ιy 0 −ιx
0 1 −ιx

]
−−−−−−−→ Rxy ⊕Rxy

[ 1 −1 ]−−−−→ Rxy −→ 0,

where the five nonzero modules are in degrees 0, 1, 2, 3, 4.
For N = 4, the Čech 4-complex on x is

Č•(x;R) : 0→ R
ιx→ Rx

1→ Rx
1→ Rx → 0.
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Therefore, the Čech 4-complex on x, y is

Č•(x, y;R) : 0→ R
[ ιxιy ]
−−−→ Rx ⊕Ry

[ 1 0
ιy 0
0 1

]
−−−−→ Rx ⊕Rxy ⊕Ry

 1 0 0
ιy 0 0
0 1 0
0 0 1


−−−−−−→

Rx ⊕Rxy ⊕Rxy ⊕Ry

[
ιy 0 0 −ιx
0 1 0 −ιx
0 0 1 −ιx

]
−−−−−−−−−→ Rxy ⊕Rxy ⊕Rxy

[
1 0 −1
0 1 −1

]
−−−−−−→

Rxy ⊕Rxy
[ 1 −1 ]−−−−→ Rxy −→ 0,

where the seven nonzero modules are in degrees 0, 1, 2, 3, 4, 5, 6.

Lemma 3.3. For a sequence x = x1, . . . , xd in R, the natural morphism
e : Č(x;R) → R (R is viewed as the N -complex D0

1(R)) induces a quasi-
isomorphism

e⊗ 1, 1⊗ e : Č(x;R)⊗R Č(x;R)
'−→ Č(x;R).

Proof. By symmetry it is enough to look only at

1⊗ e : Č(x;R)⊗R Č(x;R) −→ Č(x;R).

Since the N -complexes Č(xi;R) are semi-flat, it is enough to consider the case
d = 1 and x = x1. We have the following commutative diagram:

0

��

0

��

0

��
0 // Σ−2Rx

��

// Σ−1Č(x;R)x

��

// Σ−1Rx

��

// 0

0 // Σ−1Č(x;R)x

��

// Č(x;R)⊗R Č(x;R)

��

1⊗e // Č(x;R)

��

// 0

0 // Σ−1Rx //

��

Č(x;R) //

��

R

��

// 0.

0 0 0

Note that x : Rx → Rx is an isomorphism in DN (R), it follows that

Σ−1Č(x;R)x

is acyclic. This completes the proof. �

Given an N -complex X, set Č•(x;X) := Č•(x;R)⊗R X. The R-module

Ȟj
t (x;X) = Hj

t (Č(x;X)) for t = 1, . . . , N − 1

is the jth Čech cohomology of x on X.
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Example 3.4. (1) Let x be an element in R. Then

Ȟ0
t (x;R) = {r ∈ R | r/1 = 0 in Rx}

= {r ∈ R |xsr = 0 for some s > 0}

=
⋃
s>0

(0 :R x
s) ∼= lim−→HomR(R/(xs), R),

Ȟt
N−t(x;R) = Rx/R for t = 1, . . . , N − 1.

(2) Let x = x1, . . . , xd be a sequence of elements in R and M an R-module.
The Čech N -complex of x1 on M is

Č(x1;M) : 0→M
ι−→Mx1

1−→Mx1

1−→ · · · 1−→Mx1
−→ 0

with modules M in degree 0 and Mx1 in degrees 1, . . . , N − 1. Therefore, one
has that

Ȟ0
t (x1;M) ∼= lim−→HomR(R/(xs),M) for t = 1, . . . , N − 1,

Ȟt
N−t(x1;M) = Mx1/M for t = 1, . . . , N − 1,

ȞN
t (x1;M) = 0 for t = 1, . . . , N − 1.

Consider the exact sequence of N -complexes

0→ Σ−1Č(x1;M)x2 → Č(x1, x2;M)→ Č(x1;M)→ 0,

which implies that

Ȟ0
t (x1, x2;M) ∼= lim−→HomR(R/(xs1, x

s
2),M) for t = 1, . . . , N − 1,

ȞN
t (x1;M) = Mx1x2

/(ImMx1
+ ImMx2

) for t = 1, . . . , N − 1,

ȞN+t
N−t(x1, x2;M) = 0 for t = 1, . . . , N − 1.

By induction, one obtains that{
Ȟj
t (x;M) = 0 for j > kN d = 2k − 1

Ȟj
N−t(x;M) = 0 for j > kN + t d = 2k

for 1 6 t 6 N − 1,{
Ȟ

(k−1)N+t
N−t (x;M) = Mx1···xd

/Σci=1imageMx1···xi−1xi+1···xd
d = 2k − 1

ȞkN
t (x;M) = Mx1···xd

/Σci=1imageMx1···xi−1xi+1···xd
d = 2k

for 1 6 t 6 N − 1,

Ȟ0
t (x;M) ∼= lim−→HomR(R/(xs),M) for 1 6 t 6 N − 1.

4. Derived torsion of N-complexes

In this section, we explicit derived torsion functors in DN (R) using the Čech
N -complex.

Let a be an ideal of R. For each R-module M , set

Γa(M) = {m ∈M | anm = 0 for some integer n}.
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There is a functorial homomorphism σM : Γa(M) → M which is just the
inclusion. When they coincide, M is said to be a-torsion. The association
M → Γa(M) extends to define a left exact additive functor on CN (R), it is
called the a-torsion functor. By [10, Corollary 3.29], the functor Γa has a right
derived functor

RΓa : DN (R)→ DN (R), ξ : Γa → RΓa

constructed using semi-injective resolutions.

Proposition 4.1. There is a functorial morphism σR
X : RΓa(X) → X such

that σX = σR
X ◦ ξX as morphism Γa(X)→ X in DN (R).

Proof. Let X
α→ I be a semi-injective resolution, and define σR

X = α−1 ◦ σI ◦
ξ−1
I ◦ RΓa(α). This is independent of the resolution. �

For each N -complex X and i ∈ Z, the ith local cohomologies of X with
support in a is

Hi
t,a(X) = Hi

t(RΓa(X)) for t = 1, . . . , N − 1.

Example 4.2. Let R = Z and p be a prime number, and let M be an inde-
composable R-module. By the fundamental theorem of Abelian groups, M is
isomorphic to Z/dZ, where either d = 0 or d is a prime power. In either case
the 3-complex

0→ Q/dZ→ Q/Z 1→ Q/Z→ 0

is an injective resolution of Z/dZ. In what follows, Zp denotes Z with p inverted.
Case 1. If M = Z/peZ for some integer e > 1, then applying Γ(p)(−) to

the resolution above yields the 3-complex

0→ Zp/peZ→ Zp/Z
1→ Zp/Z→ 0.

Hence one obtains that

H0
1,(p)(M) = H0

2,(p)(M) = Z/peZ = M,

H1
1,(p)(M) = H1

2,(p)(M) = 0 = H2
1,(p)(M) = H2

2,(p)(M).

Case 2. If M = Z/dZ with d nonzero and relatively prime to p, then
applying Γ(p)(−) to the resolution above yields the 3-complex

0→ dZp/dZ→ Zp/Z
1→ Zp/Z→ 0.

Thus we conclude that

H1
2,(p)(M) = Zp/(dZp + Z) = H2

1,(p)(M),

H0
1,(p)(M) = H0

2,(p)(M) = 0 = H1
1,(p)(M) = H2

2,(p)(M).

Case 3. If M = Z, then applying Γ(p)(−) to the resolution above yields the
3-complex

0→ 0→ Zp/Z
1→ Zp/Z→ 0.
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Therefore, one has that

H1
2,(p)(M) = Zp/Z = H2

1,(p)(M),

H0
1,(p)(M) = H0

2,(p)(M) = 0 = H1
1,(p)(M) = H2

2,(p)(M).

Following [16], an inverse system {Mi}i∈N of abelian groups, with transition
maps pj,i : Mj → Mi, is called pro-zero if for every i there exists j > i such
that pj,i is zero.

Definition 4.3. (1) Let x = x1, . . . , xd be a sequence of elements in R. The
sequence x is called a weakly proregular sequence if for every i < 0 and t =
1, . . . , N − 1 the inverse system {Hi

t(K
•(xs;R))}s∈N is pro-zero.

(2) An ideal a of R is called a weakly proregular ideal if it is generated by
some weakly proregular sequence.

Let x be an element inR. For any s > 0, we have a morphism ofN -complexes

K•(xs;R) : 0

γs

��

// R

��

R

��

· · · R
xs
//

��

R //

πs

��

0

D0
1(R/(xs)) : 0 // 0 // 0 // · · · // 0 // R/(xs) // 0

which induces the following morphism of inverse systems

· · · // K•(x3;R)

γ3

��

// K•(x2;R)

γ2

��

// K•(x;R)

γ1

��
· · · // R/(x3) // R/(x2) // R/(x),

(4.1)

whereR/(xs) is viewed as theN -complexD0
1(R/(xs)). LetX be anN -complex.

(4.1) yields a morphism of direct systems:

HomR(R/(x), X)

��

// HomR(R/(x2), X)

��

// HomR(R/(x3), X)

��

// · · ·

HomR(K•(x;R), X) // HomR(K•(x2;R), X) // HomR(K•(x3;R), X) // · · ·

This gives rise to a functorial morphism of N -complexes

δx,X : lim−→s>0HomR(R/(xs), X)→ lim−→s>0HomR(K•(xs;R), X) ∼= Č(x;R)⊗RX.

Let x = x1, . . . , xd be elements in R. The Koszul N -complex on xs is the
N -complex K•(xs;R). This is equipped with a morphism of N -complexes
of θs : K•(xs;R) → R/(xs). Therefore, we obtain an inverse system of N -
complexes

· · · → K•(xs+1;R)→ K•(xs;R)→ · · · → K•(x;R),

compatible with the morphisms θs and natural maps R/(xs+1)→ R/(xs).
The next result provide an explicit formula for computing RΓa.
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Theorem 4.4. Let x = x1, . . . , xd be a weakly proregular sequence in R and
a the ideal generated by x. For any N -complex X, there is a functorial quasi-
isomorphism

δR
x,X : RΓa(X) −→ Č(x;R)⊗R X.

Proof. If d = 1, then by construction of γs, we have a quasi-isomorphism of
N -complexes

Hs : 0 // (0 :R x
s
1)� _

��

(0 :R x
s
1)� _

��

· · · (0 :R x
s
1) //
� _

��

0 //

��

0

Kerγs : 0 // R R · · · R
xs

1 // (xs1) // 0.

Write F (Y ) := Γ(x1)(Y ) and G(Y ) := lim−→s>0HomR(K•(xs1;R), Y ) for any N -

complex Y . Let I be a semi-injective N -complex. It is enough to show that
δx1,I : F (I) → G(I) is a quasi-isomorphism. By Lemma 1.5 we may assume
that I is a single injective module. For each j ∈ Z and t = 1, . . . , N − 1, one
has that

Hj
t (lim−→s>0HomR(Kerγs, I)) ∼= lim−→s>0Hj

t (HomR(Hs, I))

∼= lim−→s>0HomR(H−jN−t(Hs), I)

∼= lim−→s>0HomR(H−jN−t(K
•(x1;R)), I).

Since x1 is weakly proregular, it follows that lim−→s>0HomR(H−jN−t(K
•(x1;R)), I)

= 0 for j > 0 and t = 1, . . . , N − 1. Hence lim−→s>0HomR(Kerγs, I) is acyclic,

and so F (I) ∼= G(I) in DN (R). Now assume d > 1 and proceed by induction

on d. Let X
'−→ I be a semi-injective resolution and set y = x1, . . . , xd−1. One

has the following isomorphisms

RΓa(X) ∼= lim−→s>0HomR(R/(xs), I)

∼= lim−→s>0HomR(R/(ys)⊗R R/(xsd), I)

∼= lim−→s>0HomR(R/(ys), lim−→s>0HomR(R/(xsd), I))

∼= lim−→s>0HomR(K•(ys;R), lim−→s>0HomR(K•(xsd;R), I))

∼= lim−→s>0HomR(K•(ys;R)⊗R K•(xsd;R), I)

∼= lim−→s>0HomR(K•(xs;R), I)

∼= Č(x;R)⊗R X,

where the second one holds as R/(xs) ∼= R/(ys) ⊗R R/(xsd), the third one is
Hom-tensor adjointness, the fourth one is by induction, as claimed. �

Corollary 4.5. Let x = x1, . . . , xd be a set of generators for a weakly proregular
ideal a, and let X be an N -complex.

(1) The morphism σR
RΓa(X) : RΓa(RΓa(X)) → RΓa(X) is an isomorphism.

Thus the functor RΓa : DN (R)→ DN (R) is idempotent.
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(2) There is a natural isomorphism Hi
t,a(X) ∼= Ȟi

t(x;X).

5. The telescope N-complexes and derived completion

This section introduces the notion of telescope N -complexes and explicits
the derived completion functor in DN (R) using it.

Definition 5.1. Let {ei | i > 0} be the basis of the countably generated
free R-module

⊕∞
i=0R. Given an element x ∈ R, define the morphism v :

D0
1(
⊕∞

i=0R)→ D0
1(
⊕∞

i=0R) of N -complexes by

v(ei) =

{
e0 if i = 0,
ei−1 − xei if i > 1.

The telescope N -complex Tel(x;R) is the N -complex Σ−1C(v)

0→
∞⊕
i=0

R
v→
∞⊕
i=0

R
1→
∞⊕
i=0

R→ · · · 1→
∞⊕
i=0

R→ 0

concentrated in degrees 0, 1, . . . , N − 1. Given a sequence x = x1, . . . , xd in R,
we define

Tel(x;R) := Tel(x1;R)⊗R · · · ⊗R Tel(xd;R).

Then Tel(x;R) is an N -complex of free R-modules.

Lemma 5.2. Let x = x1, . . . , xd be a sequence in R. One has a quasi-
isomorphism

wx : Tel(x;R)
'−→ Č(x;R).

Proof. For any xj , by [15, Lemma 5.7], one can define a quasi-isomorphism of
N -complexes

Tel(xj ;R) : 0

wxj

��

//⊕∞
i=0R

w0
xj

��

v //⊕∞
i=0R

w1
xj

��

· · ·
⊕∞

i=0R

wN−1
xj

��

// 0

Č(xj ;R) : 0 // R
ι // Rxj · · · Rxj

// 0,

where w1
xj

= · · · = wN−1
xj

. Therefore, we have

Tel(x;R) ∼= Tel(x1;R)⊗R · · · ⊗R Tel(xd;R)

'→ Č(x1;R)⊗R · · · ⊗R Č(xd;R) ∼= Č(x;R).

This shows the quasi-isomorphism we seek. �

Corollary 5.3. Let x and y be two finite sequences in R and let a = (x) and

b = (y). If
√
a =
√
b, then Tel(x;R) and Tel(y;R) are homotopy equivalent.

Proof. By Lemma 5.2, we have two quasi-isomorphisms

Tel(x;R)
'→ Č(x;R), Tel(y;R)

'→ Č(y;R).

But Č(x;R) ∼= Č(y;R) in DN (R), it follows that Tel(x;R) ∼= Tel(y;R) in
DN (R). Consequently, Tel(x;R) and Tel(y;R) are homotopy equivalent. �
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Corollary 5.4. Let x = x1, . . . , xd be a weakly proregular sequence in R and
a the ideal generated by x. For any N -complex X, there is a functorial quasi-
isomorphism

RΓa(X)
'−→ Tel(x;R)⊗R X.

Let a be an ideal of R. We have an inverse system

· · ·� R/a3 � R/a2 � R/a.

Following [9], for an R-module M we write

Λa(M) := lim←−s>0(R/as ⊗RM)

for the a-adic completion of M . We get an additive functor Λa : ModR →
ModR and there is a functorial morphism τM : M → Λa(M) for any M ∈
ModR. By [10, Corollary 3.29], the functor Λa has a left derived functor

LΛa(−) : DN (R)→ DN (R), ξ′ : LΛa → Λa

constructed using semi-projective resolutions. For any N -complex X ∈ DN (R),
by analogy with Proposition 4.1, there is a functorial morphism τL

X : X →
LΛa(X) in DN (R) such that ξ′X ◦ τL

X = τX as morphism X → Λa(X).
Let x be an element of R and X an N -complex. Then the diagram (4.1)

yields a morphism of inverse systems:

· · · // HomR(HomR(K•(x2;R), R), X)

��

// HomR(HomR(K•(x;R), R), X)

��
· · · // R/(x2)⊗R X // R/(x)⊗R X.

This gives rise to a functorial morphism of N -complexes

λX : HomR(Tel(x;R), X) ' HomR(Č(x;R), X)

→ lim←−s>0(R/(xs)⊗R Y ) = Λ(x)(X).

The next results provide an explicit formula for computing LΛa.

Theorem 5.5. Let x = x1, . . . , xd be a weakly proregular sequence in R and
a the ideal generated by x. For any N -complex X, there is a functorial quasi-
isomorphism

HomR(Tel(x;R), X)
'−→ LΛa(X).

Proof. It is enough to consider a semi-projective N -complex X = P . By
Lemma 1.5 we reduce to the case of a single projective module P . By [15,

Theorem 5.21], one can obtain a quasi-isomorphism HomR(Tel(x1;R), P )
'→

Λ(x1)(P ) in DN (R), where Λ(x1)(P ) is viewed as the N -complex D0
1(Λ(x1)(P )).

By induction, we obtain the quasi-isomorphism we seek. �

Corollary 5.6. Let a be a weakly proregular ideal of R.
(1) For any N -complex X, there exists a functorial quasi-isomorphism

RHomR(RΓa(R), X)
'−→ LΛa(X).
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(2) The morphism τL
LΛa(X) : LΛa(X) → LΛa(LΛa(X)) is an isomorphism.

Thus the functor LΛa : DN (R)→ DN (R) is idempotent.

6. MGM equivalence of N-complexes

The task of this section is to prove the MGM equivalence in DN (R), i.e.,
we show an equivalence between the category of cohomologically a-torsion N -
complexes and the category of cohomologically a-adic complete N -complexes.

Definition 6.1. (1) An N -complex X ∈ DN (R) is called cohomologically
a-torsion if the morphism σR

X : RΓa(X) → X is an isomorphism. The full
subcategory of DN (R) consisting of cohomologically a-torsion N -complexes is
denoted by DN (R)a-tor.

(2) An N -complex Y ∈ DN (R) is called cohomologically a-adic complete if
the morphism τL

Y : Y → LΛa(Y ) is an isomorphism. The full subcategory of
DN (R) consisting of cohomologically a-adic complete N -complexes is denoted
by DN (R)a-com.

We first show that the functor RΓa is right adjoint to the inclusion

DN (R)a-tor ↪→ DN (R)

and the functor LΛa is left adjoint to the inclusion DN (R)a-com ↪→ DN (R).

Proposition 6.2. (1) The morphism σR
Y : RΓa(Y ) → Y induces an isomor-

phism

HomDN (R)a-tor
(X,RΓa(Y ))

'−→ HomDN (R)(X,Y ),

∀ X ∈ DN (R)a-tor, Y ∈ DN (R).
(2) The morphism τL

X : X → LΛa(X) induces an isomorphism

HomDN (R)a-com
(LΛa(X), Y )

'−→ HomDN (R)(X,Y ),

∀ X ∈ DN (R), Y ∈ DN (R)a-com.

Proof. We just prove (1) since (2) follows by duality.
We need to show that

%X,Y : HomDN (R)a-tor
(X,RΓa(Y )) = HomDN (R)(X,RΓa(Y ))

→ HomDN (R)(X,Y )

is an isomorphism. Referring then to the diagram

HomDN (R)(X,Y )
ν−→HomDN (R)(RΓa(X),RΓa(Y ))

ρ←−HomDN (R)(X,RΓa(Y )),

where ν is the natural morphism and ρ is induced by the isomorphism σR
X :

RΓa(X)→ X. Next we show that ρ−1ν is inverse to %X,Y . That %X,Y ρ
−1ν(α)
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= α for any α ∈ HomDN (R)(X,Y ) amounts to the (obvious) commutativity of
the diagram

RΓa(X)

σR
X '
��

RΓa(α) // RΓa(Y )

σR
Y
��

X
α // Y.

That ρ−1ν%X,Y (β) = β for β ∈ HomDN (R)(X,RΓa(Y )) amounts to commuta-
tivity of

RΓa(X)

σR
X '
��

RΓa(β) // RΓa(RΓa(Y ))

'
��

X
β // RΓa(Y ).

This shows the isomorphism we seek. �

Here is the main result of our paper, similar results can be found in [15,
Section 7].

Theorem 6.3. Let a be a weakly proregular ideal of R.
(1) For any X ∈ DN (R), the morphism LΛa(σR

X) : LΛa(RΓa(X))→ LΛa(X)
is an isomorphism.

(2) For any X ∈ DN (R), the morphism RΓa(τL
X) : RΓa(X)→ RΓa(LΛa(X))

is an isomorphism.
(3) For any X ∈ DN (R), one has RΓa(X) ∈ DN (R)a-tor and LΛa(X) ∈

DN (R)a-com.
(4) The functors RΓa : DN (R)a-com � DN (R)a-tor : LΛa form an equiva-

lence.

Proof. (1) By Corollary 5.4 and Theorem 5.5, we have a commutative diagram:

LΛa(RΓa(X))

'
��

LΛa(σR
X) // LΛa(X)

'
��

RHomR(RΓa(R),RΓa(X))
RHomR(RΓa(R),σR

X) // RHomR(RΓa(R), X).

Since RΓa(R) ∈ DN (R)a-tor, it follows from Proposition 6.2(1) that

RHomR(RΓa(R), σR
X) is an isomorphism,

so is LΛa(σR
X).

(2) By Corollary 5.4 and Theorem 5.5, one has a commutative diagram:

RΓa(R)⊗L
R X

'
��

RΓa(R)⊗L
Rτ

L
X // RΓa(R)⊗L

R LΛa(X)

'
��

RΓa(X)
RΓa(τL

X) // RΓa(LΛa(X)).
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Let E be a faithful injective R-module. Applying the functor RHomR(−, E)
to RΓa(R)⊗L

R τ
L
X , we have a commutative diagram:

RHomR(RΓa(R)⊗L
R LΛa(X), E)

'
��

RHomR(RΓa(R)⊗L
Rτ

L
X ,E) // RHomR(RΓa(R)⊗L

R X,E)

'
��

RHomR(LΛa(X),LΛa(E))
RHomR(τL

X ,LΛa(E)) // RHomR(X,LΛa(E)).

Since LΛa(X) ∈ DN (R)a-com, it follows from Proposition 6.2(2) that

RHomR(τL
X ,LΛa(E)) is an isomorphism,

so is RHomR(RΓa(R)⊗L
R τ

L
X , E) = HomR(RΓa(R)⊗L

R τ
L
X , E). But E is faith-

ful injective, so RΓa(R) ⊗L
R τ

L
X is an isomorphism, and hence RΓa(τL

X) is an
isomorphism.

(3) This is immediate from the idempotence of the functors RΓa and LΛa.
(4) By (1), there are functorial isomorphisms

X ∼= LΛa(X) ∼= LΛa(RΓa(X)) for X ∈ DN (R)a-com.

By (2), there are functorial isomorphisms

X ∼= RΓa(X) ∼= RΓa(LΛa(X)) for X ∈ DN (R)(a)-tor.

These isomorphisms yield the desired equivalence. �

Remark 6.4. Let a be a weakly proregular ideal of R. For any X,Y ∈ DN (R),
one has that the morphisms

RHomR(RΓa(X),RΓa(Y ))
RHomR(RΓa(τL

X),1)←−−−−−−−−−−−−− RHomR(RΓa(LΛa(X)),RΓa(Y ))

adjunction−−−−−−−→ RHomR(LΛa(X),LΛa(RΓa(Y )))

RHomR(1,LΛa(σR
Y ))−−−−−−−−−−−−−→ RHomR(LΛa(X),LΛa(Y ))

are isomorphisms in DN (R).

7. Invariant

In this section, we prove that over a commutative Noetherian ring, via Koszul
cohomology, via RHom cohomology (resp. ⊗ cohomology) and via local coho-
mology (resp. derived completion), all yield the same invariant.

Lemma 7.1. Let x = x1, . . . , xd be a sequence of R and X an N -complex. For
t = 1, . . . , N − 1, one has (x)Ht(x;X) = 0 = (x)Ht(HomR(K•(x;R);X)).
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Proof. For each xi, the morphism ofN -complexesK•(xi;R)→ K•(xi;R) given
by multiplication by xi can be factored as follows:

K•(xi;R) : 0 // R

xi

��

R

xi

��

· · · R

xi

��

R
xi //

xi

��

R // 0

D0
N (R) : 0 // R R · · · R M M //

xi

��

0

K•(xi;R) : 0 // R R · · · R R
xi // R // 0.

Thus multiplication by xi is null-homotopic on K•(xi;R), so the same hold
for K•(x;R) ⊗R X and HomR(K•(x;R);X). Therefore, xiHt(x;X) = 0 =
xiHt(HomR(K•(x;R);X)) for each xi, and hence for x = x1, . . . , xd, as desired.

�

Lemma 7.2. Let x = x1, . . . , xd be a sequence of R, a the ideal generated by
x, and let X be an N -complex. For t = 1, . . . , N − 1, one has

HomR(K•(x;R), X) ∼= RΓa(HomR(K•(x;R), X)).

Proof. By the definition of a-torsion functor, we have the following isomor-
phisms

RΓa(HomR(K•(x;R), X)) ∼= lim−→RHomR(R/as,HomR(K•(x;R), X))

∼= lim−→RHomR(R/as ⊗R K•(x;R), X)

∼= HomR(K•(x;R), lim−→RHomR(R/as, X))

∼= HomR(K•(x;R),RΓa(X))

∼= HomR(K•(x;R), X),

where the fifth one is by K•(x;R) ∈ DN (R)a-tor and Proposition 6.2(1). �

Lemma 7.3. Let x be an element in R. For i ∈ Z and a fixed t, one has

Hi
t(HomR(K(x;R), X)) = 0 implies Hi

t(HomR(K(xs), X)) = 0 for s > 0.

Proof. By octahedral axiom, we have a commutative diagram in KN (R):

0

��

// K(x;R)

��

K(x;R)

��

// 0

��
R // K(x2;R)

��

// ΣR

x

��

x2
// ΣR

R

��

// K(x;R)

��

// ΣR

��

x // ΣR

��
0 // ΣK(x;R) ΣK(x;R) // 0,



402 P. MA AND X. YANG

where all rows and columns are exact triangles in KN (R). Applying the functor
RHomR(−, X) to the second column, one gets an exact triangle

Σ−1HomR(K(x;R), X)→ HomR(K(x;R), X)

→ HomR(K(x2;R), X)→ HomR(K(x;R), X),

which implies that Hi
t(HomR(K(x2;R), X)) = 0 whenever

Hi
t(HomR(K(x;R), X)) = 0.

By repeating this process we get the claim. �

For an N -complex X, set

σ6nX : · · · d
n−N

−−−−→ Xn−N+1 dN−N+1

−−−−−→ Zn−N+2
N−1 (X)

dn−N+2

−−−−−→ · · · d
n+1

−−−→ Zn1 (X)→ 0,

σ>nX : 0→ CnN−1(X)
d̄n−→ · · · d̄

N+N−3

−−−−−→ Cn1 (X)
d̄N+N−2

−−−−−→ Xn+N−1 dN+N−1

−−−−−→ · · · .
The next result shows that Koszul cohomology, RHom cohomology and local

cohomology yield the same invariant, which was proved by Foxby and Iyengar
[6] for N = 2 (see [6, Theorem 2.1]).

Theorem 7.4. Let a be an ideal of a Noetherian ring R and K the Koszul
N -complex on a sequence of n generators for a. For any X ∈ DN (R) and a
fixed t, one has

inf{` ∈ Z |H`
t(RHomR(R/a, X)) 6= 0} = inf{` ∈ Z |H`

t,a(X) 6= 0}

= inf{` ∈ Z |H`
t(HomR(K,X)) 6= 0}.

Proof. Denote the three numbers in question a, b, c, respectively.

For an R/a-module T , one can set P
ν→ T be a semi-projective resolution

such that P i = 0 for all i > 0 by [19, Proposition 3.4]. Hence

RHomR(T,X) ∼= HomR(P,X)

∼= HomR/a(P,RHomR(R/a, X))

∼= HomR/a(P, σ>a(RHomR(R/a, X))),

where the last isomorphism is by the dual of [10, Lemma 3.9]. For n < a and
i ∈ Z, one of the inequalities i > 0 or n + i < a holds, so HomR(P,X)n =∏
i∈Z HomR(P i, Xn+i) = 0. So

H`
t(RHomR(T,X)) = 0 for ` < a.(†)

Apply the functor RHomR(−, X) to the exact triangle as/as+1 → R/as+1 →
R/as → Σas/as+1 in DN (A) yields the long exact sequence

· · · → H`
t(RHomR(R/as, X))→ H`

t(RHomR(R/as+1, X))

→ H`
t(RHomR(as/as+1, X))→ · · · .
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Then (†) implies that H`
t(RHomR(as/as+1, X)) = 0 for ` < a. By the induction

hypothesis and the long exact sequence above, we get that

H`
t(RHomR(R/as+1, X)) = 0 for ` < a and s > 0.

Hence H`
t(RΓa(X)) = 0 for ` < a. On the other hand, let X

'→ I be a semi-
injective resolution. Then the inverse system of epimorphisms · · · � R/a3 �
R/a2 � R/a induces a direct system of monomorphisms

HomR(R/a, I)� HomR(R/a2, I)� HomR(R/a3, I)� · · · .
So H`

t(RHomR(R/a, X)) = 0 for ` < b. This shows that a = b.
By Lemma 7.2 and construction of K, one has that

HomR(K,X) ' RΓa(HomR(K,X)) ' HomR(K,RΓa(X)).

Hence we get H`
t(HomR(K,X)) = 0 for ` < b. On the other hand, one has that

H`
t,a(X) = 0 for ` < c by Lemma 7.3. This shows the equality b = c. �

The next result shows that Koszul cohomology, ⊗ cohomology and derived
completion yield the same invariant, which was proved by Foxby and Iyengar
[6] for N = 2 (see [6, Theorem 4.1]).

Theorem 7.5. Let a be an ideal of a Noetherian ring R and K the Koszul
N -complex on a sequence of n generators for a. For any X ∈ DN (R) and a
fixed t, one has

sup{` |H`
t(R/a⊗L

R X) 6= 0} = sup{` |H`
t(LΛa(X)) 6= 0}

= sup{` |H`
t(K ⊗R X) 6= 0}.

Proof. Denote the three numbers in question a, b, c, respectively.

Let P
'→ X be a semi-projective resolution. Then the inverse system of

epimorphisms · · · � R/a3 � R/a2 � R/a induces an inverse system of epi-
morphisms

· · ·� R/a3 ⊗R P � R/a2 ⊗R P � R/a⊗R P.
So H`

t(R/a⊗L
RX) = 0 for ` > b. To the opposite inequality, note that T⊗L

RX
∼=

T⊗L
R/aR/a⊗

L
RX for any R/a-module T . By analogy with the proof of Theorem

7.4, one has

H`
t(T ⊗L

R X) = 0 for ` > a.(‡)

Apply − ⊗L
R X to the exact triangle as/as+1 → R/as+1 → R/as → Σas/as+1

in DN (R) yields the following long exact sequence

· · · → H`
t(a

s/as+1 ⊗L
R X)→ H`

t(R/a
s+1 ⊗L

R X)→ H`
t(R/a

s ⊗L
R X)→ · · · .

Then (‡) yields that H`
t(a

s/as+1 ⊗L
R X) = 0 for ` > a. By the induction

hypothesis and the long exact sequence above, we get that

H`
t(R/a

s+1 ⊗L
R X) = 0 for ` > a and s > 0.

This implies that a = b.
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Let E be a faithful injective R-module. We have the following equivalences:

H`
t(K ⊗R X)=0 for `>a⇐⇒ H−`N−t(HomR(K,HomR(X,E)))=0 for `>a

⇐⇒ H−`N−t(RHomR(R/a,HomR(X,E)))=0 for `>a

⇐⇒ H`
t(R/a⊗R X)=0 for `>a,

where the third equivalence is by Theorem 7.4. This shows the equality a =
c. �
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