Endocrine Manifestations Related with Inborn Errors of Metabolism

내분비계 이상을 동반하는 선천성대사질환

  • Jeogho, Lee (Department of Pediatrics, Soonchunhyang University Seoul Hospital)
  • 이정호 (순천향대학교 부속 서울병원 소아청소년과)
  • Published : 2022.12.30

Abstract

Inborn errors of metabolism (IEM) are very rare and genetically transmitted diseases and have man y different symptoms related with multisystemic involvement. More rarely, endocrinopathies can be an early and first symptom of IEM, but presents with signs of later complications in adolescent or adulthood. The mechanisms of endocrine dysfunction in IEM are poorly understood. Hypogonadotropic hypogonadism is common in hemochromatosis, adrenoleukodystrophy, galactosemia, and glycogen storage disease. Many girls with classic galactosemia are at high risk for premature ovarian insufficiency (POI), despite an early diagnosis and good control. Mitochondrial diseases are multisystem disorders and are characterized by hypo- and hypergonadotrophic hypogonadism, thyroid dysfunction and insulin dysregulation. Glycogen storage disorders (GSDs), especially type Ia, Ib, III, V are assocciated with frequent hypoglycemic events. IEM is a growing field and is not yet well recognized despite its consequences for growth, bone metabolism and fertility. For this reason, clinicians should be aware of these diagnoses and potential endocrine dysfunction.

Keywords

References

  1. Vantyghem MC, Dobbelaere D, Mention K, Wemeau JL, Saudubray JM, Douillard C. Endocrine manifestations related to inherited metabolic diseases in adults. Orphanet J Rare Dis 2012;7:11.
  2. Buretic-Tomljanovic A, Vlastelic I, Radojcic Badovinac A, Starcevic-Cizmarevic N, Nadalin S, Ristic S. The impact of hemochromatosis mutations and transferrin genotype on gonadotropin serum levels in infertile men. Fertil Steril 2009;91:1793-800. https://doi.org/10.1016/j.fertnstert.2008.02.129
  3. Sanderson S, Green A, Preece MA, Burton H. The incidence of inherited metabolic disorders in the West Midlands, UK. Arch Dis Child 2006;91:896-9. https://doi.org/10.1136/adc.2005.091637
  4. Polgreen LE, Chahla S, Miller W, Rothman S, Tolar J, Kivisto T, et al. Early diagnosis of cerebral Xlinked adrenoleukodystrophy in boys with Addison's disease improves survival and neurological outcomes. Eur J Pediatr 2011;170:1049-54. https://doi.org/10.1007/s00431-011-1401-1
  5. Stepien KM, Hendriksz CJ. The principles of the transition process from paediatric to adult services in inborn errors of metabolism--own experience. Dev Period Med 2015;19:523-7.
  6. Baschant U, Altamura S, Steele-Perkins P, Muckenthaler MU, Spasic MV, Hofbauer LC, et al. Iron effects versus metabolic alterations in hereditary hemochromatosis driven bone loss. Trends Endocrinol Metab 2022;33:652-63. https://doi.org/10.1016/j.tem.2022.06.004
  7. McDermott JH, Walsh CH. Hypogonadism in hereditary hemochromatosis. J Clin Endocrinol Metab 2005; 90:2451-5. https://doi.org/10.1210/jc.2004-0980
  8. Lopez-Erauskin J, Fourcade S, Galino J, Ruiz M, Schluter A, Naudi A, et al. Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy. Ann Neurol 2011;70:84-92. https://doi.org/10.1002/ana.22363
  9. Wang Y, Busin R, Reeves C, Bezman L, Raymond G, Toomer CJ, et al. X-linked adrenoleukodystrophy: ABCD1 de novo mutations and mosaicism. Mol Genet Metab 2011;104:160-6. https://doi.org/10.1016/j.ymgme.2011.05.016
  10. Rattay TW, Rautenberg M, Sohn AS, Hengel H, Traschutz A, Roben B, et al. Defining diagnostic cutoffs in neurological patients for serum very long chain fatty acids (VLCFA) in genetically confirmed X-Adrenoleukodystrophy. Sci Rep 2020;10:15093.
  11. Colhoun HO, Rubio Gozalbo EM, Bosch AM, Knerr I, Dawson C, Brady J, et al. Fertility in classical galactosaemia, a study of N-glycan, hormonal and inflammatory gene interactions. Orphanet J Rare Dis 2018; 13:164.
  12. Demirbas D, Coelho AI, Rubio-Gozalbo ME, Berry GT. Hereditary galactosemia. Metabolism 2018;83: 188-96. https://doi.org/10.1016/j.metabol.2018.01.025
  13. Thakur M, Feldman G, Puscheck EE. Primary ovarian insufficiency in classic galactosemia: current understanding and future research opportunities. J Assist Reprod Genet 2018;35:3-16. https://doi.org/10.1007/s10815-017-1039-7
  14. Rubio-Gozalbo ME, Haskovic M, Bosch AM, Burnyte B, Coelho AI, Cassiman D, et al. The natural history of classic galactosemia: lessons from the GalNet registry. Orphanet J Rare Dis 2019;14:86.
  15. Gubbels CS, Welt CK, Dumoulin JC, Robben SG, Gordon CM, Dunselman GA, et al. The male reproductive system in classic galactosemia: cryptorchidism and low semen volume. J Inherit Metab Dis 2013;36: 779-86. https://doi.org/10.1007/s10545-012-9539-1
  16. Faggiano A, Pisani A, Milone F, Gaccione M, Filippella M, Santoro A, et al. Endocrine dysfunction in patients with Fabry disease. J Clin Endocrinol Metab 2006;91:4319-25. https://doi.org/10.1210/jc.2006-0858
  17. Lacombe D, Germain DP, Papaxanthos-Roche A. [Azoospermia as a new feature of Fabry disease]. Rev Med Interne 2010;31 Suppl 2:S214-6. https://doi.org/10.1016/S0248-8663(10)70014-X
  18. Amicus Therapeutics. GalafoldTM (migalastat) capsules, for oral use: US prescribing information; 2018 [Internet]. 2019 [cited Accessed 29 Nov 2019.].
  19. Lee PJ, Patel A, Hindmarsh PC, Mowat AP, Leonard JV. The prevalence of polycystic ovaries in the hepatic glycogen storage diseases: its association with hyperinsulinism. Clin Endocrinol (Oxf) 1995;42:601-6. https://doi.org/10.1111/j.1365-2265.1995.tb02686.x
  20. Sechi A, Deroma L, Lapolla A, Paci S, Melis D, Burlina A, et al. Fertility and pregnancy in women affected by glycogen storage disease type I, results of a multicenter Italian study. J Inherit Metab Dis 2013;36:83- 9. https://doi.org/10.1007/s10545-012-9490-1
  21. Kaushansky A, Frydman M, Kaufman H, Homburg R. Endocrine studies of the ovulatory disturbances in Wilson's disease (hepatolenticular degeneration). Fertil Steril 1987;47:270-3. https://doi.org/10.1016/s0015-0282(16)50004-1
  22. Kapoor N, Shetty S, Thomas N, Paul TV. Wilson's disease: An endocrine revelation. Indian J Endocrinol Metab 2014;18:855-7. https://doi.org/10.4103/2230-8210.141383
  23. Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S. Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol 2017;13:92-104. https://doi.org/10.1038/nrendo.2016.151
  24. Al-Gadi IS, Haas RH, Falk MJ, Goldstein A, McCormack SE. Endocrine Disorders in Primary Mitochondrial Disease. J Endocr Soc 2018;2:361-73. https://doi.org/10.1210/js.2017-00434
  25. On S, Acar S, Demir K, Abaci A, Ozturk Y, Kahveci Celik S, et al. Evaluation of Thyroid Function Tests in Children with Chronic Liver Diseases. J Clin Res Pediatr Endocrinol 2020;12:143-9. https://doi.org/10.4274/jcrpe.galenos.2019.2019.0029
  26. Rossi A, Simeoli C, Salerno M, Ferrigno R, Della Casa R, Colao A, et al. Imbalanced cortisol concentrations in glycogen storage disease type I: evidence for a possible link between endocrine regulation and metabolic derangement. Orphanet J Rare Dis 2020; 15:99.
  27. Dutra-Clarke M, Tapia D, Curtin E, Runger D, Lee GK, Lakatos A, et al. Variable clinical features of patients with Fabry disease and outcome of enzyme replacement therapy. Mol Genet Metab Rep 2021;26: 100700.
  28. Saudubray JM, Sedel F. [Inborn errors of metabolism in adults]. Ann Endocrinol (Paris). 2009;70:14-24. https://doi.org/10.1016/j.ando.2008.12.004
  29. Erdem E, Cayonu N, Uysalol E, Yildirmak ZY. Chronic intermittent form of isovaleric acidemia mimicking diabetic ketoacidosis. J Pediatr Endocrinol Metab 2010;23:503-5.
  30. Marquard J, El Scheich T, Klee D, Schmitt M, Meissner T, Mayatepek E, et al. Chronic pancreatitis in branched-chain organic acidurias--a case of methylmalonic aciduria and an overview of the literature. Eur J Pediatr 2011;170:241-5. https://doi.org/10.1007/s00431-010-1313-5
  31. Oki Y, Okubo M, Tanaka S, Nakanishi K, Kobayashi T, Murase T. Diabetes mellitus secondary to glycogen storage disease type III. Diabet Med 2000;17:810-2. https://doi.org/10.1046/j.1464-5491.2000.00378.x
  32. Ismail H. Glycogen storage disease type III presenting with secondary diabetes and managed with insulin: a case report. Cases J 2009;2:6891.
  33. Karicheva OZ, Kolesnikova OA, Schirtz T, Vysokikh MY, Mager-Heckel AM, Lombes A, et al. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res 2011;39:8173-86. https://doi.org/10.1093/nar/gkr546
  34. Laloi-Michelin M, Meas T, Ambonville C, BellanneChantelot C, Beaufils S, Massin P, et al. The clinical variability of maternally inherited diabetes and deafness is associated with the degree of heteroplasmy in blood leukocytes. J Clin Endocrinol Metab 2009;94:3025-30. https://doi.org/10.1210/jc.2008-2680
  35. Lightfoot YL, Chen J, Mathews CE. Role of the mitochondria in immune-mediated apoptotic death of the human pancreatic β cell line βLox5. PLoS One 2011; 6:e20617.
  36. Lindroos MM, Majamaa K, Tura A, Mari A, Kalliokoski KK, Taittonen MT, et al. m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive beta-cell dysfunction. Diabetes 2009;58:543-9. https://doi.org/10.2337/db08-0981
  37. Moravej H, Altassan R, Jaeken J, Enns GM, Ellaway C, Balasubramaniam S, et al. Hypoglycemia in CDG patients due to PMM2 mutations: Follow up on hyperinsulinemic patients. JIMD Rep 2020;51:76-81. https://doi.org/10.1002/jmd2.12085
  38. Zeevaert R, Scalais E, Muino Mosquera L, De Meirleir L, De Beaufort C, Witsch M, et al. PGM1 deficiency diagnosed during an endocrine work-up of low IGF1 mediated growth failure. Acta Clin Belg 2016;71: 435-7. https://doi.org/10.1080/17843286.2016.1142043
  39. Marshall JD, Bronson RT, Collin GB, Nordstrom AD, Maffei P, Paisey RB, et al. New Alstrom syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med 2005;165:675-83. https://doi.org/10.1001/archinte.165.6.675