DOI QR코드

DOI QR Code

Online-Effects of Transcranial Direct Current Stimulation on Bimanual Force Control Performances in Healthy Young Adults

실시간 비침습적 뇌전기 자극이 양손 힘 조절능력에 미치는 영향

  • Tae Lee, Lee (Department of Human Movement Science, Incheon National University) ;
  • Joon Ho, Lee (Neuromechanical Rehabilitation Research Laboratory, Incheon National University) ;
  • Nyeonju, Kang (Department of Human Movement Science, Incheon National University)
  • Received : 2022.11.28
  • Accepted : 2022.12.20
  • Published : 2022.12.31

Abstract

Objective: The purpose of this study was to investigate potential effects of transcranial direct current stimulation (tDCS) on bimanual force control capabilities in healthy young adults. Method: Eighteen right-handed healthy young adults (10 females and 8 males; age: 23.55 ± 3.56 yrs) participated in this crossover design study. All participants were randomly allocated to both active-tDCS and sham-tDCS conditions, respectively. While receiving 20 min of active- or sham-tDCS interventions, all participants performed bimanual isometric force control tasks at four submaximal targeted force levels (i.e., 5%, 10%, 15, and 20% of maximal voluntary contraction: MVC). To compare bimanual force control capabilities including force accuracy, variability, and regularity between active-tDCS and sham-tDCS conditions, we conducted two-way repeated measures ANOVAs (2 × 4; tDCS condition × Force levels). Results: We found no significant difference in baseline MVC between active-tDCS and sham-tDCS conditions. Moreover, our findings revealed that providing bilateral tDCS including anodal tDCS on left primary motor cortex (M1) and cathodal on right M1 while conducting bimanual force control trials significantly decreased force variability and regularity at 5%MVC. Conclusion: These findings suggest that providing bilateral tDCS on M1 areas may improve bimanual force control capabilities at a relatively low targeted force level.

Keywords

Acknowledgement

This work was supported by a grant from the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2020S1A5A8041203).

References

  1. Alix-Fages, C., Romero-Arenas, S., Castro-Alonso, M., Colomer-Poveda, D., Rio-Rodriguez, D., Jerez-Martinez, A., . . . Marquez, G. (2019). Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production. A systematic review and meta-analysis. Journal of Clinical Medicine, 8(4), 536.
  2. Angius, L., Pascual-Leone, A. & Santarnecchi, E. (2018). Brain stimulation and physical performance. Progress in Brain Research, 240, 317-339. https://doi.org/10.1016/bs.pbr.2018.07.010
  3. Biabani, M., Farrell, M., Zoghi, M., Egan, G. & Jaberzadeh, S. (2018). Crossover design in transcranial direct current stimulation studies on motor learning: potential pitfalls and difficulties in interpretation of findings. Reviews in the Neurosciences, 29(4), 463-473. https://doi.org/10.1515/revneuro-2017-0056
  4. Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G. & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Neuropsychopharmacology, 14(8), 1133-1145. https://doi.org/10.1017/S1461145710001690
  5. Diedrichsen, J., Hazeltine, E., Nurss, W. K. & Ivry, R. B. (2003). The role of the corpus callosum in the coupling of bimanual isometric force pulses. Journal of Neurophysiology, 90(4), 2409-2418. https://doi.org/10.1152/jn.00250.2003
  6. Frazer, A. K., Williams, J., Spittle, M. & Kidgell, D. J. (2017). Cross-education of muscular strength is facilitated by homeostatic plasticity. European Journal of Applied Physiology, 117(4), 665-677. https://doi.org/10.1007/s00421-017-3538-8
  7. Galletly, C., Gill, S., Clarke, P., Burton, C. & Fitzgerald, P. B. (2012). A randomized trial comparing repetitive transcranial magnetic stimulation given 3 days/week and 5 days/week for the treatment of major depression: is efficacy related to the duration of treatment or the number of treatments? Psychological Medicine, 42(5), 981-988. https://doi.org/10.1017/S0033291711001760
  8. Goble, D. J. & Brown, S. H. (2008). The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neuroscience and Biobehavioral Reviews, 32(3), 598-610. https://doi.org/10.1016/j.neubiorev.2007.10.006
  9. Godinho, M. M., Junqueira, D. R., Castro, M. L., Loke, Y., Golder, S. & Neto, H. P. (2017). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 10(5), 983-985. https://doi.org/10.1016/j.brs.2017.07.001
  10. Greenhouse, S. W. & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95-112. https://doi.org/10.1007/BF02289823
  11. Hikosaka, M. & Aramaki, Y. (2021). Effects of bilateral transcranial direct current stimulation on simultaneous bimanual handgrip strength. Frontiers in Human Neuroscience, 15, 674851.
  12. Hu, X., Loncharich, M. & Newell, K. M. (2011). Visual information interacts with neuromuscular factors in the coordination of bimanual isometric force. Experimental Brain Research, 209(1), 129-138. https://doi.org/10.1007/s00221-010-2528-4
  13. Hu, X. & Newell, K. M. (2011). Visual information gain and task asymmetry interact in bimanual force coordination and control. Experimental Brain Research, 212(4), 497-504. https://doi.org/10.1007/s00221-011-2760-6
  14. Jin, Y., Lee, J., Oh, S., Celeste Flores Gimenez, M. & Yoon, B. (2019). Noninvasive brain stimulation over the M1 enhances bimanual force control ability: A randomized double-blind sham-controlled study. Journal of Motor Behavior, 51(5), 521-531. https://doi.org/10.1080/00222895.2018.1523784
  15. Kern, D. S., Semmler, J. G. & Enoka, R. M. (2001). Long-term activity in upper- and lower-limb muscles of humans. Journal of Applied Physiology, 91(5), 2224-2232.
  16. Krishnan, C., Ranganathan, R., Kantak, S. S., Dhaher, Y. Y. & Rymer, W. Z. (2014). Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies. Brain Stimulation, 7(3), 443-450. https://doi.org/10.1016/j.brs.2014.01.057
  17. Latash, M. L. & Anson, J. G. (2006). Synergies in health and disease: relations to adaptive changes in motor coordination. Physical Therapy, 86(8), 1151-1160.
  18. Lee, H., Park, Y. M. & Kang, N. (2022). Unilateral hand force control impairments in older women. EXCLI Journal, 21, 1231-1244.
  19. Lee, Hong, S. & Newell, K. M. (2008). Visual information gain and the regulation of constant force levels. Experimental Brain Research, 189(1), 61-69. https://doi.org/10.1007/s00221-008-1403-z
  20. Lee, J. H. & Kang, N. (2020). Effects of online-bandwidth visual feedback on unilateral force control capabilities. PLOS ONE, 15(9), e0238367.
  21. Lee, J. H., Lee, T. L. & Kang, N. (2021). Transcranial direct current stimulation decreased cognition-related reaction time in older adults: A systematic review and meta-analysis. Ageing Research Reviews, 70, 101377.
  22. Lodha, N., Naik, S. K., Coombes, S. A. & Cauraugh, J. H. (2010). Force control and degree of motor impairments in chronic stroke. Clinical Neurophysiology, 121(11), 1952-1961.
  23. Machado, S., Jansen, P., Almeida, V. & Veldema, J. (2019). Is tDCS an adjunct ergogenic resource for improving muscular strength and endurance performance? A systematic review. Frontiers in Psychology, 10, 1127.
  24. Nitsche, M. A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(Pt 3), 633-639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
  25. Richman, J. S. & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039
  26. Rueda-Delgado, L. M., Solesio-Jofre, E., Serrien, D. J., Mantini, D., Daffertshofer, A. & Swinnen, S. P. (2014). Understanding bimanual coordination across small time scales from an electrophysiological perspective. Neuroscience & Biobehavioral Reviews, 47, 614-635. https://doi.org/10.1016/j.neubiorev.2014.10.003
  27. Salvador, M. G., Ugrinowitsch, H., Romano-Silva, M. A., Miranda, D. M. D., Apolinario-Souza, T. & Lage, G. M. (2017). Transcranial direct current stimulation and manual asymmetries: The effect of the stimulation on the manual dexterity. Journal of Physical Education, 28, e2837
  28. Sehm, B., Kipping, J., Schafer, A., Villringer, A. & Ragert, P. (2013). A comparison between uni- and bilateral tDCS effects on functional connectivity of the human motor cortex. Frontiers in Human Neuroscience, 7, 183.
  29. Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., . . . Lipps, D. B. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721-733. https://doi.org/10.1016/j.neubiorev.2009.10.005
  30. Sosnoff, J. J., Valantine, A. D. & Newell, K. M. (2006). Independence between the amount and structure of variability at low force levels. Neuroscience Letters, 392(3), 165-169. https://doi.org/10.1016/j.neulet.2005.09.010
  31. Swinnen, S. P. (2002). Intermanual coordination: from behavioural principles to neural-network interactions. Nature Reviews Neuroscience, 3(5), 348-359. https://doi.org/10.1038/nrn807
  32. Swinnen, S. P. & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8(1), 18-25. https://doi.org/10.1016/j.tics.2003.10.017
  33. Szameitat, A. J., McNamara, A., Shen, S. & Sterr, A. (2012). Neural activation and functional connectivity during motor imagery of bimanual everyday actions. PLOS ONE, 7(6), e38506.
  34. Tazoe, T., Endoh, T., Kitamura, T. & Ogata, T. (2014). Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition. PLOS ONE, 9(12), e114244.
  35. Teulings, H. L., Contreras-Vidal, J. L., Stelmach, G. E. & Adler, C. H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146(1), 159-170. https://doi.org/10.1006/exnr.1997.6507
  36. Walsh, R. R., Small, S. L., Chen, E. E. & Solodkin, A. (2008). Network activation during bimanual movements in humans. Neuroimage, 43(3), 540-553. https://doi.org/10.1016/j.neuroimage.2008.07.019
  37. Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D. & Stergiou, N. (2013). The appropriate use of approximate entropy and sample entropy with short data sets. Annals of Biomedical Engineering, 41(2), 349-365. https://doi.org/10.1007/s10439-012-0668-3