DOI QR코드

DOI QR Code

Design, Synthesis, and Functional Evaluation of 1, 5-Disubstituted Tetrazoles as Monoamine Neurotransmitter Reuptake Inhibitors

  • Paudel, Suresh (College of Pharmacy, Chonnam National University) ;
  • Wang, Shuji (College of Pharmacy, Chonnam National University) ;
  • Kim, Eunae (College of Pharmacy, Chosun University) ;
  • Kundu, Dooti (College of Pharmacy, Chonnam National University) ;
  • Min, Xiao (College of Pharmacy, Chonnam National University) ;
  • Shin, Chan Young (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University) ;
  • Kim, Kyeong-Man (College of Pharmacy, Chonnam National University)
  • Received : 2021.07.15
  • Accepted : 2021.10.26
  • Published : 2022.03.01

Abstract

Tetrazoles were designed and synthesized as potential inhibitors of triple monoamine neurotransmitters (dopamine, norepinephrine, serotonin) reuptake based on the functional and docking simulation of compound 6 which were performed in a previous study. The compound structure consisted of a tetrazole-linker (n)-piperidine/piperazine-spacer (m)-phenyl ring, with tetrazole attached to two phenyl rings (R1 and R2). Altering the carbon number in the linker (n) from 3 to 4 and in the spacer (m) from 0 to 1 increased the potency of serotonin reuptake inhibition. Depending on the nature of piperidine/piperazine, the substituents at R1 and R2 exerted various effects in determining their inhibitory effects on monoamine reuptake. Docking study showed that the selectivity of tetrazole for different transporters was determined based on multiple interactions with various residues on transporters, including hydrophobic residues on transmembrane domains 1, 3, 6, and 8. Co-expression of dopamine transporter, which lowers dopamine concentration in the biophase by uptaking dopamine into the cells, inhibited the dopamine-induced endoctytosis of dopamine D2 receptor. When tested for compound 40 and 56, compound 40 which has more potent inhibitory activity on dopamine reuptake more strongly disinhibited the inhibitory activity of dopamine transporter on the endocytosis of dopamine D2 receptor. Overall, we identified candidate inhibitors of triple monoamine neurotransmitter reuptake and provided a theoretical background for identifying such neurotransmitter modifiers for developing novel therapeutic agents of various neuropsychiatric disorders.

Keywords

Acknowledgement

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2017M3A9G2077568). We would like to thank the Korean Basic Science Institute Gwangju Center for performing 1H NMR and 13C NMR.

References

  1. Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B. and Lindahl, E. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19-25. https://doi.org/10.1016/j.softx.2015.06.001
  2. Belmaker, R. H. and Agam, G. (2008) Major depressive disorder. N. Engl. J. Med. 358, 55-68. https://doi.org/10.1056/NEJMra073096
  3. Burger, A. (1991) Isosterism and bioisosterism in drug design. Prog. Drug Res. 37, 287-371.
  4. ChemAxon (2014) MarvinSketch (version 6.2.2), calculation module developed by ChemAxon. Available from: http://www.chemaxon.com/products/marvin/marvinsketch/.
  5. Cho, D., Zheng, M., Min, C., Ma, L., Kurose, H., Park, J. H. and Kim, K. M. (2010) Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine D(2) receptors. Mol. Endocrinol. 24, 574-586. https://doi.org/10.1210/me.2009-0369
  6. Coleman, J. A., Green, E. M. and Gouaux, E. (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334-339. https://doi.org/10.1038/nature17629
  7. Dahlof, B., Devereux, R. B., Kjeldsen, S. E., Julius, S., Beevers, G., De Faire, U., Fyhrquist, F., Ibsen, H., Kristiansson, K., Lederballe-Pedersen, O., Lindholm, L. H., Nieminen, M. S., Omvik, P., Oparil, S. and Wedel, H.; LIFE Study Group (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359, 995-1003. https://doi.org/10.1016/S0140-6736(02)08089-3
  8. Dhayanithi, V., Shafi Syed, S., Kumaran, K., Jai Sankar, K. R., Ragavan Venkat, R., Goud Kumar Sanath, P., Kumari Suchetha, N. and Pati Hari, N. (2011) Synthesis of selected 5-thio-substituted tetrazole derivatives and evaluation of their antibacterial and antifungal activities. J. Serb. Chem. Soc. 76, 165-175. https://doi.org/10.2298/JSC090421001D
  9. El-Sayed, W. A., El-Kosy, S. M., Ali, O. M., Emselm, H. M. and Abdel-Rahman, A. A. (2012) Anticancer activity of new (tetrazol-5-yl)methylindole derivatives and their acyclic c-nucleoside analogs. Acta Pol. Pharm. 69, 669-677.
  10. Gao, Y. L., Zhao, G. L., Liu, W., Shao, H., Wang, Y. L., Xu, W. R., Tang, L. D. and Wang, J. W. (2010) Design, synthesis and in vivo hypoglycemic activity of tetrazole-bearing N-glycosides as SGLT2 inhibitors. Indian. J. Chem. 49B, 1499-1508.
  11. Herr, R. J. (2002) 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg. Med. Chem. 10, 3379-3393. https://doi.org/10.1016/S0968-0896(02)00239-0
  12. Hess, B., Bekker, H., Berendsen, H. J. C. and Fraaije, J. G. E. M. (1997) LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463-1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  13. Hirschfeld, R. M. (2000) History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry 61 Suppl 6, 4-6. https://doi.org/10.4088/JCP.v61n0405
  14. Holtzheimer, P. E., 3rd and Nemeroff, C. B. (2006) Advances in the treatment of depression. NeuroRx 3, 42-56. https://doi.org/10.1016/j.nurx.2005.12.007
  15. Hutchinson, D. W. and Naylor, M. (1985) The antiviral activity of tetrazole phosphonic acids and their analogues. Nucleic Acids Res. 13, 8519-8530. https://doi.org/10.1093/nar/13.23.8519
  16. Ichikawa, T., Kitazaki, T., Matsushita, Y., Hosono, H., Yamada, M., Mizuno, M. and Itoh, K. (2000) Optically active antifungal azoles. XI. An alternative synthetic route for 1-[(1R, 2R)-2-(2, 4-difluorophenyl)-2-hydroxy-1-methyl-3-(1H-1, 2, 4-triazol-1-yl)propyl]-3-[4-(1H-1-tetrazolyl)phenyl]-2-imidazolidinone (TAK-456) and its analog. Chem. Pharm. Bull. 48, 1947-1953. https://doi.org/10.1248/cpb.48.1947
  17. Iversen, L. (2006) Neurotransmitter transporters and their impact on the development of psychopharmacology. Br. J. Pharmacol. 147 Suppl 1, S82-S88. https://doi.org/10.1038/sj.bjp.0706428
  18. John, E. O., Kirchmeier, R. L. and Shreeve, J. M. (1989) Reactions of 5-(perfluoroalkyl)tetrazolates with cyanogen, nitrosyl, and cyanuric chlorides. Inorg. Chem. 28, 4629-4633. https://doi.org/10.1021/ic00325a018
  19. Jorgensen, W. L., Chandrasekhar, J. and Madura, J. D. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926. https://doi.org/10.1063/1.445869
  20. Kim, K. M., Valenzano, K. J., Robinson, S. R., Yao, W. D., Barak, L. S. and Caron, M. G. (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and betaarrestins. J. Biol. Chem. 276, 37409-37414. https://doi.org/10.1074/jbc.M106728200
  21. Klapotke, T. M., Stierstorfer, J. and Weber, B. (2009) New energetic materials: synthesis and characterization of copper 5-nitriminotetrazolates. Inorg. Chim. Acta 362, 2311-2320. https://doi.org/10.1016/j.ica.2008.10.014
  22. Kulkarni, S. K. and Dhir, A. (2009) Current investigational drugs for major depression. Expert Opin. Investig. Drugs 18, 767-788. https://doi.org/10.1517/13543780902880850
  23. Laskowski, R. A. and Swindells, M. B. (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778-2786. https://doi.org/10.1021/ci200227u
  24. Le Bourdonnec, B., Meulon, E., Yous, S., Goossens, J. F., Houssin, R. and Henichart, J. P. (2000) Synthesis and pharmacological evaluation of new pyrazolidine-3, 5-diones as AT(1) angiotensin II receptor antagonists. J. Med. Chem. 43, 2685-2697. https://doi.org/10.1021/jm9904147
  25. Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E. and Simmerling, C. (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696-3713. https://doi.org/10.1021/acs.jctc.5b00255
  26. Martirosyan, A. O., Aleksanyan, M. V., Terzyan, S. S., Ter-Zakharyan, Y. Z., Agababyan, R. V., Karapetyan, A. A., Mndzhoyan, S. L. and Tamazyan, R. A. (2001) Synthesis and molecular and crystal structure of 1-(5-benzyl-2-tetrazolyl)-1-cyclopentanecarboxylic acid. penicillin and cephalosporins based on this acid. Pharm. Chem. J. 35, 169-171. https://doi.org/10.1023/A:1010466114698
  27. Masson, J., Sagne, C., Hamon, M. and El Mestikawy, S. (1999) Neurotransmitter transporters in the central nervous system. Pharmacol. Rev. 51, 439-464.
  28. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  29. Paudel, S., Acharya, S., Yoon, G., Kim, K. M. and Cheon, S. H. (2017a) Design, synthesis and in vitro activity of 1,4-disubstituted piperazines and piperidines as triple reuptake inhibitors. Bioorg. Med. Chem. 25, 2266-2276. https://doi.org/10.1016/j.bmc.2017.02.051
  30. Paudel, S., Cao, Y., Guo, S., An, B., Kim, K. M. and Cheon, S. H. (2015) Design and synthesis of 4-benzylpiperidine carboxamides as dual serotonin and norepinephrine reuptake inhibitors. Bioorg. Med. Chem. 23, 6418-6426. https://doi.org/10.1016/j.bmc.2015.08.022
  31. Paudel, S., Kim, E., Zhu, A., Acharya, S., Min, X., Cheon, S. H. and Kim, K. M. (2021) Structural requirements for modulating 4-benzylpiperidine carboxamides from serotonin/norepinephrine reuptake inhibitors to triple reuptake inhibitors. Biomol. Ther. (Seoul) 29, 392-398. https://doi.org/10.4062/biomolther.2020.233
  32. Paudel, S., Min, X., Acharya, S., Khadka, D. B., Yoon, G., Kim, K. M. and Cheon, S. H. (2017b) Triple reuptake inhibitors: design, synthesis and structure-activity relationship of benzylpiperidinetetrazoles. Bioorg. Med. Chem. 25, 5278-5289. https://doi.org/10.1016/j.bmc.2017.07.046
  33. Pegklidou, K., Koukoulitsa, C., Nicolaou, I. and Demopoulos, V. J. (2010) Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorg. Med. Chem. 18, 2107-2114. https://doi.org/10.1016/j.bmc.2010.02.010
  34. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  35. Prins, J., Olivier, B. and Korte, S. M. (2011) Triple reuptake inhibitors for treating subtypes of major depressive disorder: the monoamine hypothesis revisited. Expert Opin. Investig. Drugs 20, 1107-1130. https://doi.org/10.1517/13543784.2011.594039
  36. Rajasekaran, A. and Thampi, P. P. (2004) Synthesis and analgesic evaluation of some 5-[beta-(10-phenothiazinyl)ethyl]-1-(acyl)-1,2,3,4-tetrazoles. Eur. J. Med. Chem. 39, 273-279. https://doi.org/10.1016/j.ejmech.2003.11.016
  37. Singh, H., Chawla, A. S., Kapoor, V. K., Paul, D. and Malhotra, R. K. (1980) Medicinal chemistry of tetrazoles. Prog. Med. Chem. 17, 151-183. https://doi.org/10.1016/S0079-6468(08)70159-0
  38. Sorensen, L., Andersen, J., Thomsen, M., Hansen, S. M., Zhao, X., Sandelin, A., Stromgaard, K. and Kristensen, A. S. (2012) Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem. 287, 43694-43707. https://doi.org/10.1074/jbc.M112.342212
  39. Sprenger, K. G., Jaeger, V. W. and Pfaendtner, J. (2015) The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B 119, 5882-5895. https://doi.org/10.1021/acs.jpcb.5b00689
  40. Subbaiah, M. A. M. (2018) Triple reuptake inhibitors as potential therapeutics for depression and other disorders: design paradigm and developmental challenges. J. Med. Chem. 61, 2133-2165. https://doi.org/10.1021/acs.jmedchem.6b01827
  41. Torres, G. E., Yao, W. D., Mohn, A. R., Quan, H., Kim, K. M., Levey, A. I., Staudinger, J. and Caron, M. G. (2001) Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 30, 121-134. https://doi.org/10.1016/S0896-6273(01)00267-7
  42. Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
  43. Vieira, E., Huwyler, J., Jolidon, S., Knoflach, F., Mutel, V. and Wichmann, J. (2005) 9H-Xanthene-9-carboxylic acid [1,2,4]oxadiazol3-yl- and (2H-tetrazol-5-yl)-amides as potent, orally available mGlu1 receptor enhancers. Bioorg. Med. Chem. Lett. 15, 4628-4631. https://doi.org/10.1016/j.bmcl.2005.05.135
  44. Wagle, S., Adhikari, A. V. and Kumari, N. S. (2009) Synthesis of some new 4-styryltetrazolo[1,5-a]quinoxaline and 1-substituted4-styryl[1,2,4]triazolo[4,3-a]quinoxaline derivatives as potent anticonvulsants. Eur. J. Med. Chem. 44, 1135-1143. https://doi.org/10.1016/j.ejmech.2008.06.006
  45. Wagner, D., Wellmer, F., Dilks, K., William, D., Smith, M. R., Kumar, P. P., Riechmann, J. L., Greenland, A. J. and Meyerowitz, E. M. (2004) Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J. 39, 273-282. https://doi.org/10.1111/j.1365-313X.2004.02127.x
  46. Wang, K. H., Penmatsa, A. and Gouaux, E. (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322-327. https://doi.org/10.1038/nature14431
  47. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R. and Schwede, T. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-W303. https://doi.org/10.1093/nar/gky427
  48. Xue, W., Wang, P., Tu, G., Yang, F., Zheng, G., Li, X., Li, X., Chen, Y., Yao, X. and Zhu, F. (2018) Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys. Chem. Chem. Phys. 20, 6606-6616. https://doi.org/10.1039/c7cp07869b
  49. Yu, S. S., Lefkowitz, R. J. and Hausdorff, W. P. (1993) Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J. Biol. Chem. 268, 337-341. https://doi.org/10.1016/S0021-9258(18)54155-7
  50. Zhang, X. and Kim, K. M. (2017) Multifactorial regulation of G protein-coupled receptor endocytosis. Biomol. Ther. (Seoul) 25, 26-43. https://doi.org/10.4062/biomolther.2016.186