DOI QR코드

DOI QR Code

Extracellular Concentration of ⳑ-Cystine Determines the Sensitivity to System xc- Inhibitors

  • Abdullah, Md (College of Pharmacy, Chungnam National University) ;
  • Lee, Seung Jin (College of Pharmacy, Chungnam National University)
  • Received : 2021.06.25
  • Accepted : 2021.09.16
  • Published : 2022.03.01

Abstract

Targeting the cystine/glutamate exchange transporter, system xc-, is a promising anticancer strategy that induces ferroptosis, which is a distinct form of cell death mediated by iron-dependent lipid peroxidation. The concentration of ⳑ-cystine in culture medium is higher than the physiological level. This study was aimed to evaluate the effects of ⳑ-cystine concentration on the efficacy of ferroptosis inducers in hepatocellular carcinoma cells. This study showed that treatment with sulfasalazine or erastin, a system xc- inhibitor, decreased the viability of Huh6 and Huh7 cells in a dose-dependent manner, and the degree of growth inhibition was greater in medium containing a physiological ⳑ-cystine concentration of 83 µM than in commercial medium with a concentration of 200 µM ⳑ-cystine. However, RSL3, a glutathione peroxidase 4 inhibitor, decreased cell viability to a similar extent in media containing both ⳑ-cystine concentrations. Sulfasalazine and erastin significantly increased the percentages of propidium iodide-positive cells in media with 83 µM ⳑ-cystine, but not in media with 200 µM ⳑ-cystine. Sulfasalazine- or erastin-induced accumulation of lipid peroxidation as monitored by C11-BODIPY probe was higher in media with 83 µM ⳑ-cystine than in media with 200 µM ⳑ-cystine. In contrast, the changes in the percentages of propidium iodide-positive cells and lipid peroxidation by RSL3 were similar in both media. These results showed that sulfasalazine and erastin, but not RSL3, were efficacious under conditions of physiological ⳑ-cystine concentration, suggesting that medium conditions would be crucial for the design of a bioassay for system xc- inhibitors.

Keywords

Acknowledgement

This study was financially supported by a research fund of Chungnam National University.

References

  1. Bridges, R. J., Natale, N. R. and Patel, S. A. (2012) System xc- cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br. J. Pharmacol. 165, 20-34. https://doi.org/10.1111/j.1476-5381.2011.01480.x
  2. Broome, J. D. and Jeng, M. W. (1973) Promotion of replication in lymphoid cells by specific thiols and disulfides in vitro. Effects on mouse lymphoma cells in comparison with splenic lymphocytes. J. Exp. Med. 138, 574-592. https://doi.org/10.1084/jem.138.3.574
  3. Bothwell, P. J., Kron, C. D., Wittke, E. F., Czerniak, B. N. and Bode, B. P. (2018) Targeted suppression and knockout of ASCT2 or LAT1 in epithelial and mesenchymal human liver cancer cells fail to inhibit growth. Int. J. Mol. Sci. 19, 2093. https://doi.org/10.3390/ijms19072093
  4. Chawla, R. K., Lewis, F. W., Kutner, M. H., Bate, D. M., Roy, R. G. and Rudman, D. (1984) Plasma cysteine, cystine, and glutathione in cirrhosis. Gastroenterology 87, 770-776. https://doi.org/10.1016/0016-5085(84)90069-6
  5. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd and Stockwell, B. R. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
  6. Dixon, S. J., Patel, D. N., Welsch, M., Skouta, R., Lee, E. D., Hayano, M., Thomas, A. G., Gleason, C. E., Tatonetti, N. P., Slusher, B. S. and Stockwell, B. R. (2014) Pharmacological inhibition of cysteine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3, e02523. https://doi.org/10.7554/elife.02523
  7. Dringen, R., Pfeiffer, B. and Hamprecht, B. (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19, 562-569. https://doi.org/10.1523/jneurosci.19-02-00562.1999
  8. Falk, M. H., Meier, T., Issels, R. D., Brielmeier, M., Scheffer, B. and Bornkamm, G. W. (1998) Apoptosis in Burkitt lymphoma cells is prevented by promotion of cysteine uptake. Int. J. Cancer 75, 620-625. https://doi.org/10.1002/(SICI)1097-0215(19980209)75:4<620::AID-IJC21>3.0.CO;2-B
  9. Guo, W., Zhao, Y., Zhang, Z., Tan, N., Zhao, F., Ge, C., Liang, L., Jia, D., Chen, T., Yao, M., Li, J. and He, X. (2011) Disruption of xCT inhibits cell growth via the ROS/autophagy pathway in hepatocellular carcinoma. Cancer Lett. 312, 55-61. https://doi.org/10.1016/j.canlet.2011.07.024
  10. Gout, P. W., Buckley, A. R., Simms, C. R. and Bruchovsky, N. (2001) Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc - cystine transporter: a new action for an old drug. Leukemia 15, 1633-1640. https://doi.org/10.1038/sj/leu/2402238
  11. Hassannia, B., Vandenabeele, P. and Vanden, B. T. (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830-849. https://doi.org/10.1016/j.ccell.2019.04.002
  12. Ishii, T., Bannai, S. and Sugita, Y. (1981) Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J. Biol. Chem. 256, 12387-12392. https://doi.org/10.1016/S0021-9258(18)43284-X
  13. Kim, J. Y., Kanai, Y., Chairoungdua, A., Cha, S. H., Matsuo, H., Kim, D. K., Inatomi, J., Sawa, H., Ida, Y. and Endou, H. (2001) Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim. Biophys. Acta 1512, 335-344. https://doi.org/10.1016/S0005-2736(01)00338-8
  14. Kim, D. H., Abdullah, M. and Lee, S. J. (2019) Mechanisms of growth inhibition by sulfasalazine and erastin in hepatocellular carcinoma cell lines. Yakhak Hoeji 63, 152-159. https://doi.org/10.17480/psk.2019.63.3.152
  15. Kim, D. H., Kim, W. D., Kim, S. K., Moon, D. H. and Lee, S. J. (2020) TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells. Cell Death Dis. 11, 406. https://doi.org/10.1038/s41419-020-2618-6
  16. Larraufie, M. H., Yang, W. S., Jiang, E., Thomas, A. G., Slusher, B. S. and Stockwell, B. R. (2015) Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Bioorg. Med. Chem. Lett. 25, 4787-4792. https://doi.org/10.1016/j.bmcl.2015.07.018
  17. Parkhitko, A. A., Jouandin, P., Mohr, S. E. and Perrimon, N. (2019) Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 18, e13034.
  18. Picca, A., Calvani, R., Landi, G., Marini, F., Biancolillo, A., Gervasoni, J., Persichilli, S., Primiano, A., Urbani, A., Bossola, M., Bentivoglio, A. R., Cesari, M., Landi, F., Bernabei, R., Marzetti, E. and Lo Monaco, M. R. (2019) Circulating amino acid signature in older people with Parkinson's disease: a metabolic complement to the EXosomes in PArkiNson Disease (EXPAND) study. Exp. Gerontol. 128, 110766. https://doi.org/10.1016/j.exger.2019.110766
  19. Poltorack, C. D. and Dixon, S. J. (2021) Understanding the role of cysteine in ferroptosis: progress & paradoxes. FEBS J. doi: 10.1111/febs.15842 [Online ahead of print].
  20. Seiler, A., Schneider, M., Forster, H., Roth, S., Wirth, K. E., Culmsee, C., Plesnila, N., Kremmer, E., Radmark, O., Wurst, W., Bornkamm, G. W., Schweizer, U. and Conrad, M. (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237-248. https://doi.org/10.1016/j.cmet.2008.07.005
  21. Shukla, K., Thomas, A. G., Ferraris, D. V., Hin, N., Sattler, R., Alt, J., Rojas, C., Slusher, B. S. and Tsukamoto, T. (2011) Inhibition of xc- transporter-mediated cystine uptake by sulfasalazine analogs. Bioorg. Med. Chem. Lett. 21, 6184-6187. https://doi.org/10.1016/j.bmcl.2011.07.081
  22. Su, L., Li, H., Xie, A., Liu, D., Rao, W., Lan, L., Li, X., Li, F., Xiao, K., Wang, H., Yan, P., Li, X. and Xie, L. (2015) Dynamic changes in amino acid concentration profiles in patients with sepsis. PLoS ONE 10, e0121933. https://doi.org/10.1371/journal.pone.0121933
  23. Wang, X. F. and Cynader, M. S. (2000) Astrocytes provide cysteine to neurons by releasing glutathione. J. Neurochem. 74, 1434-1442. https://doi.org/10.1046/j.1471-4159.2000.0741434.x
  24. Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., Cheah, J. H., Clemons, P. A., Shamji, A. F., Clish, C. B., Brown, L. M., Girotti, A. W., Cornish, V. W., Schreiber, S. L. and Stockwell, B. R. (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010
  25. Yagoda, N., Rechenberg, M. V., Zaganjor, E., Bauer, A. J., Yang, W. S., Fridman, D. J., Wolpaw, A. J., Smukste, I., Peltier, J. M., Boniface, J. J., Smith, R., Lessnick, S. L., Sahasrabudhe, S. and Stockwell, B. R. (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864-868.
  26. Yuk, H., Abdullah, M., Kim, D. H., Lee, H. and Lee, S. J. (2021) Necrostatin-1 prevents ferroptosis in a RIPK1- and IDO-independent manner in hepatocellular carcinoma. Antioxidants 10, 1347. https://doi.org/10.3390/antiox10091347
  27. Zhu, J., Berisa, M., Schworer, S., Qin, W., Cross, J. R. and Thompson, C. B. (2019) Transsulfuration activity can support cell growth upon extracellular cysteine limitation. Cell Metab. 30, 865-876. https://doi.org/10.1016/j.cmet.2019.09.009
  28. Zhang, Y., Tan, H., Daniels, J. D., Zandkarimi, F., Liu, H., Brown, L. M., Uchida, K., O'Connor, O. A. and Stockwell, B. R. (2019) Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26, 623-633.e9. https://doi.org/10.1016/j.chembiol.2019.01.008