DOI QR코드

DOI QR Code

A New Murine Liver Fibrosis Model Induced by Polyhexamethylene Guanidine-Phosphate

  • Kim, Minjeong (College of Pharmacy, Ewha Womans University) ;
  • Hur, Sumin (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University) ;
  • Kim, Kwang H. (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University) ;
  • Cho, Yejin (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University) ;
  • Kim, Keunyoung (College of Pharmacy, Kangwon National University) ;
  • Kim, Ha Ryong (College of Pharmacy, Daegu Catholic University) ;
  • Nam, Ki Taek (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University) ;
  • Lim, Kyung-Min (College of Pharmacy, Ewha Womans University)
  • Received : 2021.07.16
  • Accepted : 2021.08.13
  • Published : 2022.03.01

Abstract

Liver fibrosis is part of the wound healing process to help the liver recover from the injuries caused by various liver-damaging insults. However, liver fibrosis often progresses to life-threatening cirrhosis and hepatocellular carcinoma. To overcome the limitations of current in vivo liver fibrosis models for studying the pathophysiology of liver fibrosis and establishing effective treatment strategies, we developed a new mouse model of liver fibrosis using polyhexamethylene guanidine phosphate (PHMG-p), a humidifier sterilizer known to induce lung fibrosis in humans. Male C57/BL6 mice were intraperitoneally injected with PHMG-p (0.03% and 0.1%) twice a week for 5 weeks. Subsequently, liver tissues were examined histologically and RNA-sequencing was performed to evaluate the expression of key genes and pathways affected by PHMG-p. PHMG-p injection resulted in body weight loss of ~15% and worsening of physical condition. Necropsy revealed diffuse fibrotic lesions in the liver with no effect on the lungs. Histology, collagen staining, immunohistochemistry for smooth muscle actin and collagen, and polymerase chain reaction analysis of fibrotic genes revealed that PHMG-p induced liver fibrosis in the peri-central, peri-portal, and capsule regions. RNA-sequencing revealed that PHMG-p affected several pathways associated with human liver fibrosis, especially with upregulation of lumican and IRAK3, and downregulation of GSTp1 and GSTp2, which are closely involved in liver fibrosis pathogenesis. Collectively we demonstrated that the PHMG-p-induced liver fibrosis model can be employed to study human liver fibrosis.

Keywords

Acknowledgement

K.M.L. is supported by National Research Foundation (NRF) funded by Ministry of Science and ICT (MSIT) (2018R1A5A2025286). K.T.N. is supported by the Korea Mouse Phenotyping Project (NRF-2016M3A9D5A01952416).

References

  1. Albanis, E. and Friedman, S. L. (2006) Antifibrotic agents for liver disease. Am. J. Transplant. 6, 12-19. https://doi.org/10.1111/j.1600-6143.2005.01143.x
  2. Asahina, K., Zhou, B., Pu, W. T. and Tsukamoto, H. (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53, 983-995. https://doi.org/10.1002/hep.24119
  3. Asiedu-Gyekye, I. J., Mahmood, S. A., Awortwe, C. and Nyarko, A. K. (2014) A preliminary safety evaluation of polyhexamethylene guanidine hydrochloride. Int. J. Toxicol. 33, 523-531. https://doi.org/10.1177/1091581814553036
  4. Balog, S., Li, Y., Ogawa, T., Miki, T., Saito, T., French, S. W. and Asahina, K. (2020) Development of capsular fibrosis beneath the liver surface in humans and mice. Hepatology 71, 291-305. https://doi.org/10.1002/hep.30809
  5. Barbariga, M., Vallone, F., Mosca, E., Bignami, F., Magagnotti, C., Fonteyne, P., Chiappori, F., Milanesi, L., Rama, P., Andolfo, A. and Ferrari, G. (2019) The role of extracellular matrix in mouse and human corneal neovascularization. Sci. Rep. 9, 14272. https://doi.org/10.1038/s41598-019-50718-8
  6. Bataller, R. and Gao, B. (2015) Liver fibrosis in alcoholic liver disease. Semin. Liver Dis. 35, 146-156. https://doi.org/10.1055/s-0035-1550054
  7. Bechmann, L. P., Zahn, D., Gieseler, R. K., Fingas, C. D., Marquitan, G., Jochum, C., Gerken, G., Friedman, S. L. and Canbay, A. (2009) Resveratrol amplifies profibrogenic effects of free fatty acids on human hepatic stellate cells. Hepatol. Res. 39, 601-608. https://doi.org/10.1111/j.1872-034X.2008.00485.x
  8. Bhunchet, E. and Wake, K. (1992) Role of mesenchymal cell populations in porcine serum-induced rat liver fibrosis. Hepatology 16, 1452-1473. https://doi.org/10.1002/hep.1840160623
  9. Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pages, F., Trajanoski, Z. and Galon, J. (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093. https://doi.org/10.1093/bioinformatics/btp101
  10. Bonacchi, A., Petrai, I., Defranco, R. M., Lazzeri, E., Annunziato, F., Efsen, E., Cosmi, L., Romagnani, P., Milani, S., Failli, P., Batignani, G., Liotta, F., Laffi, G., Pinzani, M., Gentilini, P. and Marra, F. (2003) The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology 125, 1060-1076. https://doi.org/10.1016/S0016-5085(03)01194-6
  11. Brzezinska, M. S., Walczak, M., Jankiewicz, U. and Pejchalova, M. (2018) Antimicrobial activity of polyhexamethylene guanidine derivatives introduced into polycaprolactone. J. Polym. Environ. 26, 589-595. https://doi.org/10.1007/s10924-017-0974-9
  12. Chakravarti, S. (2002) Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj. J. 19, 287-293. https://doi.org/10.1023/A:1025348417078
  13. Chang, Y., He, J., Xiang, X. and Li, H. (2021) LUM is the hub gene of advanced fibrosis in nonalcoholic fatty liver disease patients. Clin. Res. Hepatol. Gastroenterol. 45, 101435. https://doi.org/10.1016/j.clinre.2020.04.006
  14. Charlton, M., Viker, K., Krishnan, A., Sanderson, S., Veldt, B., Kaalsbeek, A. J., Kendrick, M., Thompson, G., Que, F., Swain, J. and Sarr, M. (2009) Differential expression of lumican and fatty acid binding protein-1: new insights into the histologic spectrum of nonalcoholic fatty liver disease. Hepatology 49, 1375-1384. https://doi.org/10.1002/hep.22927
  15. De Minicis, S. and Brenner, D. A. (2007) NOX in liver fibrosis. Arch. Biochem. Biophys. 462, 266-272. https://doi.org/10.1016/j.abb.2007.04.016
  16. Diamond, D. L., Jacobs, J. M., Paeper, B., Proll, S. C., Gritsenko, M. A., Carithers, R. L., Jr., Larson, A. M., Yeh, M. M., Camp, D. G., 2nd, Smith, R. D. and Katze, M. G. (2007) Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction. Hepatology 46, 649-657. https://doi.org/10.1002/hep.21751
  17. Dong, S., Chen, Q. L., Song, Y. N., Sun, Y., Wei, B., Li, X. Y., Hu, Y. Y., Liu, P. and Su, S. B. (2016) Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J. Toxicol. Sci. 41, 561-572. https://doi.org/10.2131/jts.41.561
  18. elSisi, A. E., Hall, P., Sim, W. L., Earnest, D. L. and Sipes, I. G. (1993) Characterization of vitamin A potentiation of carbon tetrachloride-induced liver injury. Toxicol. Appl. Pharmacol. 119, 280-288. https://doi.org/10.1006/taap.1993.1070
  19. Fernandez-Checa, J. C., Kaplowitz, N., Garcia-Ruiz, C. and Colell, A. (1998) Mitochondrial glutathione: importance and transport. Semin. Liver Dis. 18, 389-401. https://doi.org/10.1055/s-2007-1007172
  20. Finkel, T. (1998) Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248-253. https://doi.org/10.1016/S0955-0674(98)80147-6
  21. Gao, J., Qin, X. J., Jiang, H., Chen, J. F., Wang, T., Zhang, T., Xu, S. Z. and Song, J. M. (2017) Detecting serum and urine metabolic profile changes of CCl4-liver fibrosis in rats at 12 weeks based on gas chromatography-mass spectrometry. Exp. Ther. Med. 14, 1496-1504. https://doi.org/10.3892/etm.2017.4668
  22. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y. and Zhang, J. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80. https://doi.org/10.1186/gb-2004-5-10-r80
  23. George, J., Tsuchishima, M. and Tsutsumi, M. (2019) Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis. Cell Death Dis. 10, 18. https://doi.org/10.1038/s41419-018-1272-8
  24. Guimaraes, E. L., Empsen, C., Geerts, A. and van Grunsven, L. A. (2010) Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J. Hepatol. 52, 389-397. https://doi.org/10.1016/j.jhep.2009.12.007
  25. Ippolito, D. L., AbdulHameed, M. D., Tawa, G. J., Baer, C. E., Permenter, M. G., McDyre, B. C., Dennis, W. E., Boyle, M. H., Hobbs, C. A., Streicker, M. A., Snowden, B. S., Lewis, J. A., Wallqvist, A. and Stallings, J. D. (2016) Gene expression patterns associated with histopathology in toxic liver fibrosis. Toxicol. Sci. 149, 67-88. https://doi.org/10.1093/toxsci/kfv214
  26. Ishak, K. G. (1994) Chronic hepatitis: morphology and nomenclature. Mod. Pathol. 7, 690-713.
  27. Ismail, M. H. and Pinzani, M. (2009) Reversal of liver fibrosis. Saudi J. Gastroenterol. 15, 72-79. https://doi.org/10.4103/1319-3767.45072
  28. Iwaisako, K., Jiang, C., Zhang, M., Cong, M., Moore-Morris, T. J., Park, T. J., Liu, X., Xu, J., Wang, P., Paik, Y. H., Meng, F., Asagiri, M., Murray, L. A., Hofmann, A. F., Iida, T., Glass, C. K., Brenner, D. A. and Kisseleva, T. (2014) Origin of myofibroblasts in the fibrotic liver in mice. Proc. Natl. Acad. Sci. U.S.A. 111, E3297-E3305.
  29. Jiao, X., Sherman, B. T., Huang da, W., Stephens, R., Baseler, M. W., Lane, H. C. and Lempicki, R. A. (2012) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28, 1805-1806. https://doi.org/10.1093/bioinformatics/bts251
  30. Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27-30. https://doi.org/10.1093/nar/28.1.27
  31. Kim, H. R., Lee, K., Park, C. W., Song, J. A., Shin, D. Y., Park, Y. J. and Chung, K. H. (2016) Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses. Arch. Toxicol. 90, 617-632. https://doi.org/10.1007/s00204-015-1486-9
  32. Krahenbuhl, S., Brass, E. P. and Hoppel, C. L. (2000) Decreased carnitine biosynthesis in rats with secondary biliary cirrhosis. Hepatology 31, 1217-1223. https://doi.org/10.1053/jhep.2000.8105
  33. Lander, H. M. (1997) An essential role for free radicals and derived species in signal transduction. FASEB J. 11, 118-124. https://doi.org/10.1096/fasebj.11.2.9039953
  34. Lang, D., Knop, J., Wesche, H., Raffetseder, U., Kurrle, R., Boraschi, D. and Martin, M. U. (1998) The type II IL-1 receptor interacts with the IL-1 receptor accessory protein: a novel mechanism of regulation of IL-1 responsiveness. J. Immunol. 161, 6871-6877. https://doi.org/10.4049/jimmunol.161.12.6871
  35. Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359. https://doi.org/10.1038/nmeth.1923
  36. Lee, K. S., Buck, M., Houglum, K. and Chojkier, M. (1995) Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J. Clin. Invest. 96, 2461-2468. https://doi.org/10.1172/JCI118304
  37. Li, Y., Wang, J. and Asahina, K. (2013) Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proc. Natl. Acad. Sci. U.S.A. 110, 2324-2329. https://doi.org/10.1073/pnas.1214136110
  38. Liu, X., Dai, R., Ke, M., Suheryani, I., Meng, W. and Deng, Y. (2017) Differential proteomic analysis of dimethylnitrosamine (dmn)-induced liver fibrosis. Proteomics 17, 1700267. https://doi.org/10.1002/pmic.201700267
  39. Lua, I., Li, Y., Zagory, J. A., Wang, K. S., French, S. W., Sevigny, J. and Asahina, K. (2016) Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. J. Hepatol. 64, 1137-1146. https://doi.org/10.1016/j.jhep.2016.01.010
  40. Mann, J. and Mann, D. A. (2009) Transcriptional regulation of hepatic stellate cells. Adv. Drug Deliv. Rev. 61, 497-512. https://doi.org/10.1016/j.addr.2009.03.011
  41. McLean, E. K., McLean, A. E. and Sutton, P. M. (1969) Instant cirrhosis. An improved method for producing cirrhosis of the liver in rats by simultaneous administration of carbon tetrachloride and phenobarbitone. Br. J. Exp. Pathol. 50, 502-506.
  42. Mederacke, I., Hsu, C. C., Troeger, J. S., Huebener, P., Mu, X., Dapito, D. H., Pradere, J. P. and Schwabe, R. F. (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823. https://doi.org/10.1038/ncomms3823
  43. Mohammadzadeh, N., Lunde, I. G., Andenaes, K., Strand, M. E., Aronsen, J. M., Skrbic, B., Marstein, H. S., Bandlien, C., Nygard, S., Gorham, J., Sjaastad, I., Chakravarti, S., Christensen, G., Engebretsen, K. V. T. and Tonnessen, T. (2019) The extracellular matrix proteoglycan lumican improves survival and counteracts cardiac dilatation and failure in mice subjected to pressure overload. Sci. Rep. 9, 9206. https://doi.org/10.1038/s41598-019-45651-9
  44. Nishikawa, T., Bellance, N., Damm, A., Bing, H., Zhu, Z., Handa, K., Yovchev, M. I., Sehgal, V., Moss, T. J., Oertel, M., Ram, P. T., Pipinos, II, Soto-Gutierrez, A., Fox, I. J. and Nagrath, D. (2014) A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease. J. Hepatol. 60, 1203-1211. https://doi.org/10.1016/j.jhep.2014.02.014
  45. Park, D. (2013) Review of humidifier lung cases caused by use of humidifier-focusing on probable environmental causal agents. Korean J. Environ. Health Sci. 39, 105-116. https://doi.org/10.5668/JEHS.2013.39.2.105
  46. Phillips, M. J. and Poucell, S. (1981) Modern aspects of the morphology of viral hepatitis. Hum. Pathol. 12, 1060-1084. https://doi.org/10.1016/S0046-8177(81)80328-0
  47. Quinlan, A. R. and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842. https://doi.org/10.1093/bioinformatics/btq033
  48. Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V. and Quackenbush, J. (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374-378. https://doi.org/10.2144/03342mt01
  49. Schuppan, D. and Afdhal, N. H. (2008) Liver cirrhosis. Lancet 371, 838-851. https://doi.org/10.1016/S0140-6736(08)60383-9
  50. Shim, H. E., Lee, J. Y., Lee, C. H., Mushtaq, S., Song, H. Y., Song, L., Choi, S. J., Lee, K. and Jeon, J. (2018) Quantification of inhaled aerosol particles composed of toxic household disinfectant using radioanalytical method. Chemosphere 207, 649-654. https://doi.org/10.1016/j.chemosphere.2018.05.132
  51. Singer, J. W., Fleischman, A., Al-Fayoumi, S., Mascarenhas, J. O., Yu, Q. and Agarwal, A. (2018) Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 9, 33416-33439. https://doi.org/10.18632/oncotarget.26058
  52. Solodun, Y. V., Monakhova, Y. B., Kuballa, T., Samokhvalov, A. V., Rehm, J. and Lachenmeier, D. W. (2011) Unrecorded alcohol consumption in Russia: toxic denaturants and disinfectants pose additional risks. Interdiscip. Toxicol. 4, 198-205. https://doi.org/10.2478/v10102-011-0030-x
  53. Song, G., Hu, C., Zhu, H., Li, X., Zhao, L., Zhou, R., Zhang, X., Zhang, F., Wu, L. and Li, Y. (2013) Comparative proteomics study on liver mitochondria of primary biliary cirrhosis mouse model. BMC Gastroenterol. 13, 64. https://doi.org/10.1186/1471-230X-13-64
  54. Song, J., Jung, K. J., Yang, M. J., Han, S. C. and Lee, K. (2021) Assessment of acute and repeated pulmonary toxicities of oligo(2-(2-ethoxy)ethoxyethyl guanidium chloride in mice. Toxicol. Res. 37, 99-113. https://doi.org/10.1007/s43188-020-00058-x
  55. Soni, D., Wang, D. M., Regmi, S. C., Mittal, M., Vogel, S. M., Schluter, D. and Tiruppathi, C. (2018) Deubiquitinase function of A20 maintains and repairs endothelial barrier after lung vascular injury. Cell Death Discov. 4, 60. https://doi.org/10.1038/s41420-018-0056-3
  56. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. and Finkel, T. (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296-299. https://doi.org/10.1126/science.270.5234.296
  57. Tazi, K. A., Quioc, J. J., Saada, V., Bezeaud, A., Lebrec, D. and Moreau, R. (2006) Upregulation of TNF-alpha production signaling pathways in monocytes from patients with advanced cirrhosis: possible role of Akt and IRAK-M. J. Hepatol. 45, 280-289. https://doi.org/10.1016/j.jhep.2006.02.013
  58. Terblanche, J. and Hickman, R. (1991) Animal models of fulminant hepatic failure. Dig. Dis. Sci. 36, 770-774. https://doi.org/10.1007/BF01311235
  59. Thannickal, V. J., Day, R. M., Klinz, S. G., Bastien, M. C., Larios, J. M. and Fanburg, B. L. (2000) Ras-dependent and -independent regulation of reactive oxygen species by mitogenic growth factors and TGF-beta1. FASEB J. 14, 1741-1748. https://doi.org/10.1096/fj.99-0878com
  60. Tsukamoto, H., Matsuoka, M. and French, S. W. (1990) Experimental models of hepatic fibrosis: a review. Semin. Liver Dis. 10, 56-65. https://doi.org/10.1055/s-2008-1040457
  61. Wang, Y., Hu, Y., Chao, C., Yuksel, M., Colle, I., Flavell, R. A., Ma, Y., Yan, H. and Wen, L. (2013) Role of IRAK-M in alcohol induced liver injury. PLoS ONE 8, e57085. https://doi.org/10.1371/journal.pone.0057085
  62. Wobser, H., Dorn, C., Weiss, T. S., Amann, T., Bollheimer, C., Buttner, R., Scholmerich, J. and Hellerbrand, C. (2009) Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res. 19, 996-1005. https://doi.org/10.1038/cr.2009.73
  63. Yasuda, M., Shimizu, I., Shiba, M. and Ito, S. (1999) Suppressive effects of estradiol on dimethylnitrosamine-induced fibrosis of the liver in rats. Hepatology 29, 719-727. https://doi.org/10.1002/hep.510290307