DOI QR코드

DOI QR Code

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway

  • Ko, Eul-Bee (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Jang, Yin-Gi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Cho-Won (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Go, Ryeo-Eun (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Hong Kyu (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, Kyung-Chul (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2021.04.19
  • Accepted : 2021.06.30
  • Published : 2022.03.01

Abstract

This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program (2020R1A2C2006060) and the Global Research and Development Center (GRDC) Program (2017K1A4A3014959) through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT. In addition, this work was also supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA; grant number: 320005-4).

References

  1. Aborehab, N. M. and Osama, N. (2019) Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 19, 154. https://doi.org/10.1186/s12935-019-0868-0
  2. Antognelli, C., Frosini, R., Santolla, M. F., Peirce, M. J. and Talesa, V. N. (2019) Oleuropein-induced apoptosis is mediated by mitochondrial glyoxalase 2 in NSCLC A549 cells: a mechanistic inside and a possible novel nonenzymatic role for an ancient enzyme. Oxid. Med. Cell. Longev. 2019, 8576961.
  3. Badhani, B., Sharma, N. and Kakkar, R. (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 5, 27540-27557. https://doi.org/10.1039/C5RA01911G
  4. Bellamy, C. O. (1997) p53 and apoptosis. Br. Med. Bull. 53, 522-538. https://doi.org/10.1093/oxfordjournals.bmb.a011628
  5. Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A. and McCubrey, J. A. (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603. https://doi.org/10.1038/sj.leu.2402824
  6. Cheng, H., Shcherba, M., Pendurti, G., Liang, Y., Piperdi, B. and Perez-Soler, R. (2014) Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Manag. 3, 67-75. https://doi.org/10.2217/lmt.13.72
  7. Chia, Y. C., Rajbanshi, R., Calhoun, C. and Chiu, R. H. (2010) Antineoplastic effects of gallic acid, a major component of Toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules 15, 8377-8389. https://doi.org/10.3390/molecules15118377
  8. Choubey, S., Varughese, L. R., Kumar, V. and Beniwal, V. (2015) Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm. Pat. Anal. 4, 305-315. https://doi.org/10.4155/ppa.15.14
  9. Collins, K., Jacks, T. and Pavletich, N. P. (1997) The cell cycle and cancer. Proc. Natl. Acad. Sci. U.S.A. 94, 2776-2778. https://doi.org/10.1073/pnas.94.7.2776
  10. Dasari, S. and Tchounwou, P. B. (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025
  11. Decatris, M. P., Sundar, S. and O'Byrne, K. J. (2004) Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat. Rev. 30, 53-81. https://doi.org/10.1016/S0305-7372(03)00139-7
  12. Deshpande, A., Sicinski, P. and Hinds, P. W. (2005) Cyclins and cdks in development and cancer: a perspective. Oncogene 24, 2909-2915. https://doi.org/10.1038/sj.onc.1208618
  13. Evan, G. I. and Vousden, K. H. (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342-348. https://doi.org/10.1038/35077213
  14. Florea, A. M. and Busselberg, D. (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3, 1351-1371. https://doi.org/10.3390/cancers3011351
  15. Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. and van Bree, C. (2006) Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315-2319. https://doi.org/10.1038/nprot.2006.339
  16. Fresno Vara, J. A., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C. and Gonzalez-Baron, M. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193-204. https://doi.org/10.1016/j.ctrv.2003.07.007
  17. Gao, N., Flynn, D. C., Zhang, Z., Zhong, X. S., Walker, V., Liu, K. J., Shi, X. and Jiang, B. H. (2004) G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol. 287, C281-C291.
  18. Gridelli, C., Rossi, A., Carbone, D. P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L. and Rosell, R. (2015) Non-smallcell lung cancer. Nat. Rev. Dis. Primers 1, 15009. https://doi.org/10.1038/nrdp.2015.9
  19. Han, S. W. and Roman, J. (2010) Targeting apoptotic signaling pathways in human lung cancer. Curr. Cancer Drug Targets 10, 566-574. https://doi.org/10.2174/156800910791859461
  20. Hemann, M. T. and Lowe, S. W. (2006) The p53-Bcl-2 connection. Cell Death Differ. 13, 1256-1259. https://doi.org/10.1038/sj.cdd.4401962
  21. Ihle, N. T. and Powis, G. (2010) Inhibitors of phosphatidylinositol-3-kinase in cancer therapy. Mol. Aspects Med. 31, 135-144. https://doi.org/10.1016/j.mam.2010.02.003
  22. Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y. and Yabu, Y. (1994) Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun. 204, 898-904. https://doi.org/10.1006/bbrc.1994.2544
  23. Isuzugawa, K., Inoue, M. and Ogihara, Y. (2001) Catalase contents in cells determine sensitivity to the apoptosis inducer gallic acid. Biol. Pharm. Bull. 24, 1022-1026. https://doi.org/10.1248/bpb.24.1022
  24. Jang, Y. G., Ko, E. B. and Choi, K. C. (2020) Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J. Nutr. Biochem. 84, 108444. https://doi.org/10.1016/j.jnutbio.2020.108444
  25. Ji, B. C., Hsu, W. H., Yang, J. S., Hsia, T. C., Lu, C. C., Chiang, J. H., Yang, J. L., Lin, C. H., Lin, J. J., Suen, L. J., Gibson Wood, W. and Chung, J. G. (2009) Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J. Agric. Food Chem. 57, 7596-7604. https://doi.org/10.1021/jf901308p
  26. Jones, E. V., Dickman, M. J. and Whitmarsh, A. J. (2007) Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem. J. 405, 617-623. https://doi.org/10.1042/BJ20061778
  27. Katiyar, S. K., Roy, A. M. and Baliga, M. S. (2005) Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol. Cancer Ther. 4, 207-216. https://doi.org/10.1158/1535-7163.207.4.2
  28. Liang, C. Z., Zhang, X., Li, H., Tao, Y. Q., Tao, L. J., Yang, Z. R., Zhou, X. P., Shi, Z. L. and Tao, H. M. (2012) Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways. Cancer Biother. Radiopharm. 27, 701-710. https://doi.org/10.1089/cbr.2012.1245
  29. Liu, S. L., Liu, Z., Zhang, L. D., Zhu, H. Q., Guo, J. H., Zhao, M., Wu, Y. L., Liu, F. and Gao, F. H. (2017) GSK3beta-dependent cyclin D1 and cyclin E1 degradation is indispensable for NVP-BEZ235 induced G0/G1 arrest in neuroblastoma cells. Cell Cycle 16, 2386-2395. https://doi.org/10.1080/15384101.2017.1383577
  30. Lo, C., Lai, T. Y., Yang, J. H., Yang, J. S., Ma, Y. S., Weng, S. W., Chen, Y. Y., Lin, J. G. and Chung, J. G. (2010) Gallic acid induces apoptosis in A375.S2 human melanoma cells through caspase-dependent and -independent pathways. Int. J. Oncol. 37, 377-385.
  31. Locatelli, C., Filippin-Monteiro, F. B. and Creczynski-Pasa, T. B. (2013) Alkyl esters of gallic acid as anticancer agents: a review. Eur. J. Med. Chem. 60, 233-239. https://doi.org/10.1016/j.ejmech.2012.10.056
  32. Loehrer, P. J. and Einhorn, L. H. (1984) Drugs five years later. Cisplatin. Ann. Intern. Med. 100, 704-713. https://doi.org/10.7326/0003-4819-100-5-704
  33. Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M. and To, S. S. (2010) Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol. 641, 102-107. https://doi.org/10.1016/j.ejphar.2010.05.043
  34. Markman, M., Rothman, R., Hakes, T., Reichman, B., Hoskins, W., Rubin, S., Jones, W., Almadrones, L. and Lewis, J. L., Jr. (1991) Second-line platinum therapy in patients with ovarian cancer previously treated with cisplatin. J. Clin. Oncol. 9, 389-393. https://doi.org/10.1200/JCO.1991.9.3.389
  35. Maurya, D. K., Nandakumar, N. and Devasagayam, T. P. (2011) Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr. 48, 85-90. https://doi.org/10.3164/jcbn.11-004FR
  36. Moghtaderi, H., Sepehri, H., Delphi, L. and Attari, F. (2018) Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. Bioimpacts 8, 185-194. https://doi.org/10.15171/bi.2018.21
  37. Mou, H., Zheng, Y., Zhao, P., Bao, H., Fang, W. and Xu, N. (2011) Celastrol induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria- and Fas/FasL-mediated pathways. Toxicol. In Vitro 25, 1027-1032. https://doi.org/10.1016/j.tiv.2011.03.023
  38. Pignon, J. P., Tribodet, H., Scagliotti, G. V., Douillard, J. Y., Shepherd, F. A., Stephens, R. J., Dunant, A., Torri, V., Rosell, R., Seymour, L., Spiro, S. G., Rolland, E., Fossati, R., Aubert, D., Ding, K., Waller, D. and Le Chevalier, T.; LACE Collaborative Group (2008) Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552-3559. https://doi.org/10.1200/JCO.2007.13.9030
  39. Rajalakshmi, K., Devaraj, H. and Niranjali Devaraj, S. (2001) Assessment of the no-observed-adverse-effect level (NOAEL) of gallic acid in mice. Food Chem. Toxicol. 39, 919-922. https://doi.org/10.1016/S0278-6915(01)00022-9
  40. Siegel, R. L., Miller, K. D. and Jemal, A. (2019) Cancer statistics, 2019. CA Cancer J. Clin. 69, 7-34. https://doi.org/10.3322/caac.21551
  41. Sinnberg, T., Lasithiotakis, K., Niessner, H., Schittek, B., Flaherty, K. T., Kulms, D., Maczey, E., Campos, M., Gogel, J., Garbe, C. and Meier, F. (2009) Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J. Invest. Dermatol. 129, 1500-1515. https://doi.org/10.1038/jid.2008.379
  42. Sourani, Z. M., Pourgheysari, B. P., Beshkar, P. M., Shirzad, H. P. and Shirzad, M. M. (2016) Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran. J. Med. Sci. 41, 525-530.
  43. Tian, X., Huang, B., Zhang, X. P., Lu, M., Liu, F., Onuchic, J. N. and Wang, W. (2017) Modeling the response of a tumor-suppressive network to mitogenic and oncogenic signals. Proc. Natl. Acad. Sci. U.S.A. 114, 5337-5342. https://doi.org/10.1073/pnas.1702412114
  44. Verma, S., Singh, A. and Mishra, A. (2013) Gallic acid: molecular rival of cancer. Environ. Toxicol. Pharmacol. 35, 473-485. https://doi.org/10.1016/j.etap.2013.02.011
  45. Vinci, M., Gowan, S., Boxall, F., Patterson, L., Zimmermann, M., Court, W., Lomas, C., Mendiola, M., Hardisson, D. and Eccles, S. A. (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10, 29. https://doi.org/10.1186/1741-7007-10-29
  46. Wang, K., Zhu, X., Zhang, K., Zhu, L. and Zhou, F. (2014) Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J. Biochem. Mol. Toxicol. 28, 387-393. https://doi.org/10.1002/jbt.21575
  47. Wang, R., Ma, L., Weng, D., Yao, J., Liu, X. and Jin, F. (2016) Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol. Rep. 35, 3075-3083. https://doi.org/10.3892/or.2016.4690
  48. Wang, X., Martindale, J. L. and Holbrook, N. J. (2000) Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem. 275, 39435-39443. https://doi.org/10.1074/jbc.M004583200
  49. Xu, J., Ji, L. D. and Xu, L. H. (2006) Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicol. Lett. 166, 160-167. https://doi.org/10.1016/j.toxlet.2006.06.643
  50. You, B. R., Kim, S. Z., Kim, S. H. and Park, W. H. (2011) Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol. Cell. Biochem. 357, 295-303. https://doi.org/10.1007/s11010-011-0900-8
  51. Yousef, M. I., Saad, A. A. and El-Shennawy, L. K. (2009) Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem. Toxicol. 47, 1176-1183. https://doi.org/10.1016/j.fct.2009.02.007
  52. Yu, J. S. and Cui, W. (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143, 3050-3060. https://doi.org/10.1242/dev.137075
  53. Zappa, C. and Mousa, S. A. (2016) Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res. 5, 288-300. https://doi.org/10.21037/tlcr.2016.06.07
  54. Zeng, M., Su, Y., Li, K., Jin, D., Li, Q., Li, Y. and Zhou, B. (2020) Gallic acid inhibits bladder cancer T24 cell progression through mitochondrial dysfunction and PI3K/Akt/NF-κB signaling suppression. Front. Pharmacol. 11, 1222. https://doi.org/10.3389/fphar.2020.01222
  55. Zhang, H. Y., Zhang, P. N. and Sun, H. (2009) Aberration of the PI3K/AKT/mTOR signaling in epithelial ovarian cancer and its implication in cisplatin-based chemotherapy. Eur. J. Obstet. Gynecol. Reprod. Biol. 146, 81-86. https://doi.org/10.1016/j.ejogrb.2009.04.035
  56. Zhao, B. and Hu, M. (2013) Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol. Lett. 6, 1749-1755. https://doi.org/10.3892/ol.2013.1632
  57. Zhou, Y. D., Hou, J. G., Yang, G., Jiang, S., Chen, C., Wang, Z., Liu, Y. Y., Ren, S. and Li, W. (2019) Icariin ameliorates cisplatin-induced cytotoxicity in human embryonic kidney 293 cells by suppressing ROS-mediated PI3K/Akt pathway. Biomed. Pharmacother. 109, 2309-2317. https://doi.org/10.1016/j.biopha.2018.11.108