Acknowledgement
This work was supported by the Basic Science Research Program (2020R1A2C2006060) and the Global Research and Development Center (GRDC) Program (2017K1A4A3014959) through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT. In addition, this work was also supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA; grant number: 320005-4).
References
- Aborehab, N. M. and Osama, N. (2019) Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 19, 154. https://doi.org/10.1186/s12935-019-0868-0
- Antognelli, C., Frosini, R., Santolla, M. F., Peirce, M. J. and Talesa, V. N. (2019) Oleuropein-induced apoptosis is mediated by mitochondrial glyoxalase 2 in NSCLC A549 cells: a mechanistic inside and a possible novel nonenzymatic role for an ancient enzyme. Oxid. Med. Cell. Longev. 2019, 8576961.
- Badhani, B., Sharma, N. and Kakkar, R. (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 5, 27540-27557. https://doi.org/10.1039/C5RA01911G
- Bellamy, C. O. (1997) p53 and apoptosis. Br. Med. Bull. 53, 522-538. https://doi.org/10.1093/oxfordjournals.bmb.a011628
- Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A. and McCubrey, J. A. (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603. https://doi.org/10.1038/sj.leu.2402824
- Cheng, H., Shcherba, M., Pendurti, G., Liang, Y., Piperdi, B. and Perez-Soler, R. (2014) Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Manag. 3, 67-75. https://doi.org/10.2217/lmt.13.72
- Chia, Y. C., Rajbanshi, R., Calhoun, C. and Chiu, R. H. (2010) Antineoplastic effects of gallic acid, a major component of Toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules 15, 8377-8389. https://doi.org/10.3390/molecules15118377
- Choubey, S., Varughese, L. R., Kumar, V. and Beniwal, V. (2015) Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm. Pat. Anal. 4, 305-315. https://doi.org/10.4155/ppa.15.14
- Collins, K., Jacks, T. and Pavletich, N. P. (1997) The cell cycle and cancer. Proc. Natl. Acad. Sci. U.S.A. 94, 2776-2778. https://doi.org/10.1073/pnas.94.7.2776
- Dasari, S. and Tchounwou, P. B. (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025
- Decatris, M. P., Sundar, S. and O'Byrne, K. J. (2004) Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat. Rev. 30, 53-81. https://doi.org/10.1016/S0305-7372(03)00139-7
- Deshpande, A., Sicinski, P. and Hinds, P. W. (2005) Cyclins and cdks in development and cancer: a perspective. Oncogene 24, 2909-2915. https://doi.org/10.1038/sj.onc.1208618
- Evan, G. I. and Vousden, K. H. (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342-348. https://doi.org/10.1038/35077213
- Florea, A. M. and Busselberg, D. (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3, 1351-1371. https://doi.org/10.3390/cancers3011351
- Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. and van Bree, C. (2006) Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315-2319. https://doi.org/10.1038/nprot.2006.339
- Fresno Vara, J. A., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C. and Gonzalez-Baron, M. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193-204. https://doi.org/10.1016/j.ctrv.2003.07.007
- Gao, N., Flynn, D. C., Zhang, Z., Zhong, X. S., Walker, V., Liu, K. J., Shi, X. and Jiang, B. H. (2004) G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol. 287, C281-C291.
- Gridelli, C., Rossi, A., Carbone, D. P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L. and Rosell, R. (2015) Non-smallcell lung cancer. Nat. Rev. Dis. Primers 1, 15009. https://doi.org/10.1038/nrdp.2015.9
- Han, S. W. and Roman, J. (2010) Targeting apoptotic signaling pathways in human lung cancer. Curr. Cancer Drug Targets 10, 566-574. https://doi.org/10.2174/156800910791859461
- Hemann, M. T. and Lowe, S. W. (2006) The p53-Bcl-2 connection. Cell Death Differ. 13, 1256-1259. https://doi.org/10.1038/sj.cdd.4401962
- Ihle, N. T. and Powis, G. (2010) Inhibitors of phosphatidylinositol-3-kinase in cancer therapy. Mol. Aspects Med. 31, 135-144. https://doi.org/10.1016/j.mam.2010.02.003
- Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y. and Yabu, Y. (1994) Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun. 204, 898-904. https://doi.org/10.1006/bbrc.1994.2544
- Isuzugawa, K., Inoue, M. and Ogihara, Y. (2001) Catalase contents in cells determine sensitivity to the apoptosis inducer gallic acid. Biol. Pharm. Bull. 24, 1022-1026. https://doi.org/10.1248/bpb.24.1022
- Jang, Y. G., Ko, E. B. and Choi, K. C. (2020) Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J. Nutr. Biochem. 84, 108444. https://doi.org/10.1016/j.jnutbio.2020.108444
- Ji, B. C., Hsu, W. H., Yang, J. S., Hsia, T. C., Lu, C. C., Chiang, J. H., Yang, J. L., Lin, C. H., Lin, J. J., Suen, L. J., Gibson Wood, W. and Chung, J. G. (2009) Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J. Agric. Food Chem. 57, 7596-7604. https://doi.org/10.1021/jf901308p
- Jones, E. V., Dickman, M. J. and Whitmarsh, A. J. (2007) Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem. J. 405, 617-623. https://doi.org/10.1042/BJ20061778
- Katiyar, S. K., Roy, A. M. and Baliga, M. S. (2005) Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol. Cancer Ther. 4, 207-216. https://doi.org/10.1158/1535-7163.207.4.2
- Liang, C. Z., Zhang, X., Li, H., Tao, Y. Q., Tao, L. J., Yang, Z. R., Zhou, X. P., Shi, Z. L. and Tao, H. M. (2012) Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways. Cancer Biother. Radiopharm. 27, 701-710. https://doi.org/10.1089/cbr.2012.1245
- Liu, S. L., Liu, Z., Zhang, L. D., Zhu, H. Q., Guo, J. H., Zhao, M., Wu, Y. L., Liu, F. and Gao, F. H. (2017) GSK3beta-dependent cyclin D1 and cyclin E1 degradation is indispensable for NVP-BEZ235 induced G0/G1 arrest in neuroblastoma cells. Cell Cycle 16, 2386-2395. https://doi.org/10.1080/15384101.2017.1383577
- Lo, C., Lai, T. Y., Yang, J. H., Yang, J. S., Ma, Y. S., Weng, S. W., Chen, Y. Y., Lin, J. G. and Chung, J. G. (2010) Gallic acid induces apoptosis in A375.S2 human melanoma cells through caspase-dependent and -independent pathways. Int. J. Oncol. 37, 377-385.
- Locatelli, C., Filippin-Monteiro, F. B. and Creczynski-Pasa, T. B. (2013) Alkyl esters of gallic acid as anticancer agents: a review. Eur. J. Med. Chem. 60, 233-239. https://doi.org/10.1016/j.ejmech.2012.10.056
- Loehrer, P. J. and Einhorn, L. H. (1984) Drugs five years later. Cisplatin. Ann. Intern. Med. 100, 704-713. https://doi.org/10.7326/0003-4819-100-5-704
- Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M. and To, S. S. (2010) Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol. 641, 102-107. https://doi.org/10.1016/j.ejphar.2010.05.043
- Markman, M., Rothman, R., Hakes, T., Reichman, B., Hoskins, W., Rubin, S., Jones, W., Almadrones, L. and Lewis, J. L., Jr. (1991) Second-line platinum therapy in patients with ovarian cancer previously treated with cisplatin. J. Clin. Oncol. 9, 389-393. https://doi.org/10.1200/JCO.1991.9.3.389
- Maurya, D. K., Nandakumar, N. and Devasagayam, T. P. (2011) Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr. 48, 85-90. https://doi.org/10.3164/jcbn.11-004FR
- Moghtaderi, H., Sepehri, H., Delphi, L. and Attari, F. (2018) Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. Bioimpacts 8, 185-194. https://doi.org/10.15171/bi.2018.21
- Mou, H., Zheng, Y., Zhao, P., Bao, H., Fang, W. and Xu, N. (2011) Celastrol induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria- and Fas/FasL-mediated pathways. Toxicol. In Vitro 25, 1027-1032. https://doi.org/10.1016/j.tiv.2011.03.023
- Pignon, J. P., Tribodet, H., Scagliotti, G. V., Douillard, J. Y., Shepherd, F. A., Stephens, R. J., Dunant, A., Torri, V., Rosell, R., Seymour, L., Spiro, S. G., Rolland, E., Fossati, R., Aubert, D., Ding, K., Waller, D. and Le Chevalier, T.; LACE Collaborative Group (2008) Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552-3559. https://doi.org/10.1200/JCO.2007.13.9030
- Rajalakshmi, K., Devaraj, H. and Niranjali Devaraj, S. (2001) Assessment of the no-observed-adverse-effect level (NOAEL) of gallic acid in mice. Food Chem. Toxicol. 39, 919-922. https://doi.org/10.1016/S0278-6915(01)00022-9
- Siegel, R. L., Miller, K. D. and Jemal, A. (2019) Cancer statistics, 2019. CA Cancer J. Clin. 69, 7-34. https://doi.org/10.3322/caac.21551
- Sinnberg, T., Lasithiotakis, K., Niessner, H., Schittek, B., Flaherty, K. T., Kulms, D., Maczey, E., Campos, M., Gogel, J., Garbe, C. and Meier, F. (2009) Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J. Invest. Dermatol. 129, 1500-1515. https://doi.org/10.1038/jid.2008.379
- Sourani, Z. M., Pourgheysari, B. P., Beshkar, P. M., Shirzad, H. P. and Shirzad, M. M. (2016) Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran. J. Med. Sci. 41, 525-530.
- Tian, X., Huang, B., Zhang, X. P., Lu, M., Liu, F., Onuchic, J. N. and Wang, W. (2017) Modeling the response of a tumor-suppressive network to mitogenic and oncogenic signals. Proc. Natl. Acad. Sci. U.S.A. 114, 5337-5342. https://doi.org/10.1073/pnas.1702412114
- Verma, S., Singh, A. and Mishra, A. (2013) Gallic acid: molecular rival of cancer. Environ. Toxicol. Pharmacol. 35, 473-485. https://doi.org/10.1016/j.etap.2013.02.011
- Vinci, M., Gowan, S., Boxall, F., Patterson, L., Zimmermann, M., Court, W., Lomas, C., Mendiola, M., Hardisson, D. and Eccles, S. A. (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10, 29. https://doi.org/10.1186/1741-7007-10-29
- Wang, K., Zhu, X., Zhang, K., Zhu, L. and Zhou, F. (2014) Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J. Biochem. Mol. Toxicol. 28, 387-393. https://doi.org/10.1002/jbt.21575
- Wang, R., Ma, L., Weng, D., Yao, J., Liu, X. and Jin, F. (2016) Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol. Rep. 35, 3075-3083. https://doi.org/10.3892/or.2016.4690
- Wang, X., Martindale, J. L. and Holbrook, N. J. (2000) Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem. 275, 39435-39443. https://doi.org/10.1074/jbc.M004583200
- Xu, J., Ji, L. D. and Xu, L. H. (2006) Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicol. Lett. 166, 160-167. https://doi.org/10.1016/j.toxlet.2006.06.643
- You, B. R., Kim, S. Z., Kim, S. H. and Park, W. H. (2011) Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol. Cell. Biochem. 357, 295-303. https://doi.org/10.1007/s11010-011-0900-8
- Yousef, M. I., Saad, A. A. and El-Shennawy, L. K. (2009) Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem. Toxicol. 47, 1176-1183. https://doi.org/10.1016/j.fct.2009.02.007
- Yu, J. S. and Cui, W. (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143, 3050-3060. https://doi.org/10.1242/dev.137075
- Zappa, C. and Mousa, S. A. (2016) Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res. 5, 288-300. https://doi.org/10.21037/tlcr.2016.06.07
- Zeng, M., Su, Y., Li, K., Jin, D., Li, Q., Li, Y. and Zhou, B. (2020) Gallic acid inhibits bladder cancer T24 cell progression through mitochondrial dysfunction and PI3K/Akt/NF-κB signaling suppression. Front. Pharmacol. 11, 1222. https://doi.org/10.3389/fphar.2020.01222
- Zhang, H. Y., Zhang, P. N. and Sun, H. (2009) Aberration of the PI3K/AKT/mTOR signaling in epithelial ovarian cancer and its implication in cisplatin-based chemotherapy. Eur. J. Obstet. Gynecol. Reprod. Biol. 146, 81-86. https://doi.org/10.1016/j.ejogrb.2009.04.035
- Zhao, B. and Hu, M. (2013) Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol. Lett. 6, 1749-1755. https://doi.org/10.3892/ol.2013.1632
- Zhou, Y. D., Hou, J. G., Yang, G., Jiang, S., Chen, C., Wang, Z., Liu, Y. Y., Ren, S. and Li, W. (2019) Icariin ameliorates cisplatin-induced cytotoxicity in human embryonic kidney 293 cells by suppressing ROS-mediated PI3K/Akt pathway. Biomed. Pharmacother. 109, 2309-2317. https://doi.org/10.1016/j.biopha.2018.11.108