References
- R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), 49-66. https://doi.org/10.1007/BF01195292
- R. Curto and I.B. Jung, Quadratically hyponormal weighted shifts with first two equal weights, Integral Equations Operator Theory 37 (2000), 208-231. https://doi.org/10.1007/BF01192423
- Y.B. Choi, J.K. Han and W.Y. Lee, One-step extension of the Bergman shift, Proc. Amer. Math. Soc. 128 (2000), 3639-3646. https://doi.org/10.1090/S0002-9939-00-05516-7
- Y. Dong, G. Exner, I.B. Jung and C. Li, Quadratically hyponormal recursively generated weighted shifts, Oper. Theory Adv. Appl. 187 (2008), 141-155.
- G. Exner, I.B. Jung, M.R. Lee and S.H. Park, Quadratically hyponormal weighted shifts with recursive tail, J. Math. Anal. Appl. 408 (2013), 298-305. https://doi.org/10.1016/j.jmaa.2013.05.058
- G. Exner, I.B. Jung, M.R. Lee and S.H. Park, Backward extensions of recursively generated weighted shifts and quadratic hyponormality, Integral Equations Operator Theory 79 (2014), 49-66. https://doi.org/10.1007/s00020-014-2126-0
- I.B. Jung and S.S. Park, Quadratically hyponormal weighted shifts and their examples, Integral Equations Operator Theory 36 (2000), 480-498. https://doi.org/10.1007/BF01232741
- Y. Dong, M.R. Lee and C. Li, New results on k-hyponormality of backward extensions of subnormal weighted shifts, J. Appl. Math. & Informatics 37 (2019), 73-83. https://doi.org/10.14317/JAMI.2019.073
- C. Li, M.R. Lee and S.H. Baek, A relationship: subnormal, polynomially hyponormal and semi-weakly hyponormal weighted shifts, J. Math. Anal. Appl. 479 (2019), 703-717. https://doi.org/10.1016/j.jmaa.2019.06.046
- C. Li, W. Qi and H. Wang, Backward extensions of Bergman-type weighted shift, Bull. Korean Math. Soc. 57 (2020), 81-93. https://doi.org/10.4134/BKMS.b190060
- MacKichan Software, Inc., Scientific WorkPlace Version 4.0, MacKichan Software, Inc., 2002.