Acknowledgement
This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (2020M3C1C1A02086303).
References
- Benton, J., Coles, A., & Coles, A. (2012, May). Temporal Planning with Preferences and Time-Dependent Continuous Costs. Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling.
- Carreno, Y., Pairet, E., Petillot, Y., & Petrick, R.P. (2020, June). A Decentralised Strategy for Heterogeneous AUV Missions via Goal Distribution and Temporal Planning. Proceedings of the International Conference on Automated Planning and Scheduling, 30(1), 431-439. Retrieved from https://ojs.aaai.org/index.php/ICAPS/article/view/6738
- Coles, A., Coles, A., Fox, M., & Long, D. (2021). Forward-Chaining Partial-Order Planning. Proceedings of the International Conference on Automated Planning and Scheduling, 20(1), 42-49. Retrieved from https://ojs.aaai.org/index.php/ICAPS/article/view/13403
- Coles, A., Coles, A., Fox, M., & Long, D. (2012). COLIN: Planning with Continuous Linear Numeric Change. Journal of Artificial Intelligence Research, 44, 1-96. https://doi.org/10.1613/jair.3608
- Elkins, L., Sellers, D., & Monach, W.R. (2010). The Autonomous Maritime Navigation (AMN) Project: Field tests, Autonomous and Cooperative Behaviors, Data Fusion, Sensors, and Vehicles. Journal of Field Robotics, 27(6), 790-818. https://doi.org/10.1002/rob.20367
- Geffner, H.A. (2003). PDDL 2.1: Representation vs. Computation. Journal of Artificial Intelligence Research, 20, 139-144. https://doi.org/10.1613/jair.1995
- Kim, B., Wang, Z., Kaelbling, L.P., & Lozano-Perez, T. (2019). Learning to Guide Task and Motion Planning Using Score-Space Representation. The International Journal of Robotics Research, 38(7), 793-812. https://doi.org/10.1177/0278364919848837
- Kim, W.J., & Lee, K. (2018). A Study of the Development Test and Evaluation and Verification Procedure of a Multi-Mission USV, M-Searcher. Journal of Ocean Engineering and Technology, 32(5), 402-409. https://doi.org/10.26748/KSOE.2018.6.32.5.402
- Martinez, N.L., Martinez-Ortega, J.F., Castillejo, P., & Beltran Martinez, V. (2020). Survey of Mission Planning and Management Architectures for Underwater Cooperative Robotics Operations. Applied Sciences, 10(3), 1086. https://doi.org/10.3390/app10031086
- McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., & McEwen, R. (2007, September). T-rex: A Model-Based Architecture for Auv Control. In 3rd Workshop on Planning and Plan Execution for Real-World Systems.
- Miloradovic, B., Curuklu, B., & Ekstrom, M. (2017, July). A Genetic Mission Planner for Solving Temporal Multi-Agent Problems with Concurrent Tasks. Advances in Swarm Intelligence, 481-493. https://doi.org/10.1007/978-3-319-61833-3_51
- Moon, J. (2021). Centralized, Distributed, Hybrid Task Planning Framework for Multi-Robot System in Diverse Communication Status. Journal of Positioning, Navigation, and Timing, 10(3), 215-220. https://doi.org/10.11003/JPNT.2021.10.3.215
- Munoz, P., R-Moreno, M.D., & Barrero, D.F. (2016). Unified Framework for Path-Planning and Task-Planning for Autonomous Robots. Robotics and Autonomous Systems, 82, 1-14. https://doi.org/10.1016/j.robot.2016.04.010
- Palomeras, N., Carrera, A., Hurtos, N., Karras, G.C., Bechlioulis, C.P., Cashmore, M., ... Kormushev, P. (2016). Toward Persistent Autonomous Intervention in a Subsea Panel. Autonomous Robots, 40(7), 1279-1306. https://doi.org/10.1007/s10514-015-9511-7
- Py, F., Pinto, J., Silva, M.A., Johansen, T.A., Sousa, J., & Rajan, K. (2016, October). Europtus: A Mixed-Initiative Controller for Multi-Vehicle Oceanographic Field Experiments. In International Symposium on Experimental Robotics, 323-340. https://doi.org/10.1007/978-3-319-50115-4_29
- Silver, T., Chitnis, R., Curtis, A., Tenenbaum, J., Lozano-Perez, T., & Kaelbling, L.P. (2020). Planning with Learned Object Importance in Large Problem Instances Using Graph Neural Networks. arXiv preprint arXiv:2009.05613.
- Tsiogkas, N., & Lane, D.M. (2018). An Evolutionary Algorithm for Online, Resource-Constrained, Multivehicle Sensing Mission Planning. In IEEE Robotics and Automation Letters, 3(2), 1199-1206. https://doi.org/10.1109/LRA.2018.2794578.