Acknowledgement
This study was conducted with the support of the National Research Foundation of Korea (Development of Underwater Stereo Camera Stereoscopic Visualization Technology, NRF-2021R1A2C2006682) with funding from the Ministry of Science and ICT in 2021 and the Korea Institute of Marine Science & Technology Promotion (establishment of test evaluation ships and systems for the verification of the marine equipment performance in real sea areas) with funding from the Ministry of Oceans and Fisheries in 2021.
References
- Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., & Bekaert, P. (2017). Color Balance and Fusion for Underwater Image Enhancement. IEEE Transactions on Image Processing, 27(1), 379-393. https://doi.org/10.1109/TIP.2017.2759252
- Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adversarial Networks. Proceedings of the 34th International Conference on Machine Learning, PMLR, 70, 214-223.
- Bharal, S. (2015). Review of Underwater Image Enhancement Techniques. International Research Journal of Engineering and Technology, 2(3), 340-344.
- Chen, X., Yu, J., Kong, S., Wu, Z., Fang, X., & Wen, L. (2019). Towards Real-Time Advancement of Underwater Visual Quality with GAN. In IEEE Transactions on Industrial Electronics, 66(12), 9350-9359. https://doi.org/10.1109/TIE.2019.2893840
- Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A Large-Scale Hierarchical Image Database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248-255. https://doi.org/10.1109/CVPR.2009.5206848
- Fabbri, C., Islam, M.J., & Sattar, J. (2018, May). Enhancing Underwater Imagery Using Generative Adversarial Networks. In 2018 IEEE International Conference on Robotics and Automation (ICRA), 7159-7165. https://doi.org/10.1109/ICRA.2018.8460552
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., WardNe-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27.
- Han, M., Lyu, Z., Qiu, T., & Xu, M. (2018). A Review on Intelligence Dehazing and Color Restoration for Underwater Images. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(5), 1820-1832. https://doi.org/10.1109/TSMC.2017.2788902
- He, K., Sun, J., & Tang, X. (2010). Single Image Haze Removal Using Dark Channel Prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2341-2353. https://doi.org/10.1109/TPAMI.2010.168
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778.
- Islam, M.J., Xia, Y., & Sattar, J. (2020). Fast Underwater Image Enhancement for Improved Visual Perception. IEEE Robotics and Automation Letters, 5(2), 3227-3234. https://doi.org/10.1109/LRA.2020.2974710
- Kim, D.G., & Kim, S. M. (2020). Single Image-based Enhancement Techniques for Underwater Optical Imaging. Journal of Ocean Engineering and Technology, 34(6), 442-453. https://doi.org/10.26748/KSOE.2020.030
- Li, C.Y., & Cavallaro, A. (2020, October). Cast-Gan: Learning to Retmove Colour Cast From Underwater Images. In 2020 IEEE International Conference on Image Processing (ICIP), 1083-1087. https://doi.org/10.1109/ICIP40778.2020.9191157
- Li, W.J., Gu, B., Huang, J.T., Wang, S.Y., & Wang, M.H. (2012). Single Image Visibility Enhancement in Gradient Domain. IET Image Processing, 6(5), 589-595. https://doi.org/10.1049/iet-ipr.2010.0574
- Mobley, C.D., & Mobley, C.D. (1994). Light and Water: Radiative Transfer in Natural Waters. Academic Press.
- Panetta, K., Gao, C., & Agaian, S. (2015). Human-Visual-System- Inspired Underwater Image Quality Measures. IEEE Journal of Oceanic Engineering, 41(3), 541-551. https://doi.org/10.1109/JOE.2015.2469915
- Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
- Schettini, R., & Corchs, S. (2010). Underwater Image Processing: State of the Art of Restoration and Image Enhancement Methods. EURASIP Journal on Advances in Signal Processing, 2010, 1-14. https://doi.org/10.1155/2010/746052
- Uplavikar, P. M., Wu, Z., & Wang, Z. (2019, May). All-in-One Underwater Image Enhancement Using Domain-Adversarial Learning. In CVPR Workshops, 1-8.
- Wang, J., Li, P., Deng, J., Du, Y., Zhuang, J., Liang, P., & Liu, P. (2020). CA-GAN: Class-Condition Attention GAN for A Underwater Image Enhancement. IEEE Access, 8, 130719-130728. https://doi.org/10.1109/ACCESS.2020.3003351
- Yang, M., & Sowmya, A. (2015). An Underwater Color Image Quality Evaluation Metric. IEEE Transactions on Image Processing, 24(12), 6062-6071. https://doi.org/10.1109/TIP.2015.2491020.
- Zhang, T., Li, Y., & Takahashi, S. (2021). Underwater Image Enhancement Using Improved Generative Adversarial Network. Concurrency and Computation: Practice and Experience, 33(22), e5841. https://doi.org/10.1002/cpe.5841
- Zhu, J.Y., Park, T., Isola, P., & Efros, A.A. (2017). Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision, 2223-2232.