DOI QR코드

DOI QR Code

A Practical Method to Quantify Very Low Fluxes of Nitrous Oxide from a Rice Paddy

벼논에서 미량 아산화질소 플럭스의 정량을 위한 실용적 방법

  • Okjung, Ju (Environmental Agriculture Research Division, Gyeonggido Agricultural Research and Extension Services) ;
  • Namgoo, Kang (Measurement Instrument and Data Verification Research Team, Advanced Measurement Instrumentation Institute, Korea Research Institute of Standards and Science) ;
  • Hoseup, Soh (Environmental Agriculture Research Division, Gyeonggido Agricultural Research and Extension Services) ;
  • Jung-Soo, Park (Environmental Agriculture Research Division, Gyeonggido Agricultural Research and Extension Services)
  • 주옥정 (경기도농업기술원 환경농업연구과) ;
  • 강남구 (한국표준과학연구원 첨단측정장비연구소 측정장비데이터검증연구팀) ;
  • 소호섭 (경기도농업기술원 환경농업연구과) ;
  • 박중수 (경기도농업기술원 환경농업연구과)
  • Received : 2022.07.28
  • Accepted : 2022.11.07
  • Published : 2022.12.30

Abstract

In order to accurately calculate greenhouse gas emissions in the agricultural field, Korea has been developing national-specific emission factors through direct measurement of gas fluxes using the closed-chamber method. In the rice paddy, only national-specific emission factors for methane (CH4) have been developed. It is thus necessary to develop those for nitrous oxide (N2O) affected by the application of nitrogen fertilizer. However, since the concentration of N2O emission from rice cultivation is very low, the QA/QC methods such as method detection and practical quantification limits are important. In this study, N2O emission from a rice paddy was evaluated affected by the amount of nitrogen fertilizer, by taking into account both method detection and practical quantification limits for N2O concentration. The N2O emission from a rice paddy soils affected by the nitrogen fertilizer application was estimated in the following order. The method detection limit (MDL) of N2O concentration was calculated at 95% confidence level based on the pooled standard deviation of concentration data sets using a standard gas with 98 nmol mol-1 N2O 10 times for 3 days. The practical quantification limit (PQL) of the N2O concentration is estimated by multiplying 10 to the pooled standard deviation. For the N2O flux data measured during the rice cultivation period in 2021, the MDL and PQL of N2O concentration were 18 nmol mol-1 and 87 nmol mol-1, respectively. The measured values above the PQL were merely about 12% of the total data. The cumulative N2O emission estimated based on the MDL and PQL was higher than the cumulative emission without nitrogen fertilizer application. This research would contribute to improving the reliability in quantification of the N2O flux data for accurate estimates of greenhouse gas emissions and uncertainties.

본 연구에서는 벼 재배 부문 질소 비료 시용에 따른 N2O 배출량 평가를 위해 경기도 화성시 경기도농업기술원 내 벼논에서 폐쇄형 챔버법으로 측정하였으며, 미량의 N2O 배출량이 과소평가되지 않도록 현장 측정 플럭스 자료에 대한 방법검출한계(MDL; Method Detection Limit)와 실용정량한계(PQL; Practical Quantitation Limit)를 산정하고 이를 바탕으로 QA/QC 방법을 설정하여 원시자료와 QA/QC 방법을 수행한 N2O 배출량을 비교하였다. 벼 재배 표준시비량인 3요소 N-P2O5-K2O = 90-45-57 kg ha-1 기준 질소 0배, 1배, 1.5배, 2배로 4처리하여 평가한 N2O 배출량 변화에서는 N2O 배출량이 가장 적었던 질소 0배 처리구 외에는 원시자료와 QA/QC 방법을 수행한 자료 모두 유의한 차이가 없었으며, 질소 비료 시용량이 많을수록 N2O 배출량이 높게 나타나 질소 1배 처리구 대비 질소 2배 처리구는 191% 높게 나타났다. 질소 시비량에 따른 N2O 배출량의 회귀관계 분석에서는 지수회귀모형에서 결정계수가 가장 높았으며, 선형회귀모형으로 산정한 기본배출계수는 IPCC에서 제공하는 기본배출계수 값과 동일하게 나타났다. 본 연구결과는 농업부문 온실가스 배출량 산정을 위해 보편적으로 사용하고 있는 폐쇄형 챔버법의 플럭스 자료에 대한 QA/QC 방법을 제시하고, 원시자료와의 비교분석을 통해 질소 비료 시비에 따른 벼논에서 발생하는 N2O 배출량에 대한 신뢰성 있는 평가가 가능한 것으로 판단할 수 있다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(세부과제번호: PJ014853032022)의 지원으로 수행되었습니다.

References

  1. Akiyama, H., and K. Yagi, 2005: Direct N2O emissions from rice paddy fields: Summary of available data. Global Biogeochemical Cycles 19(1). doi:10.1029/2004GB002378
  2. Arbindra, T., F. Bizimana, B. Pandey, R. K. P. Yadav, W. Dong, and C. Hu, 2020: Nitrous Oxide Emissions from Paddies: Understanding the Role of Rice Plants. Plants 9, 180. doi:10.3390/plants9020180
  3. Bertora, C., M. Peyron, S. Pelissetti, C. Grignani, and D. Sacco, 2018: Assessment of methane and nitrous oxide fluxes from paddy field by means of static closed chambers maintaining plants within headspace. Journal of Visualized Experiments 139, e56754. doi:10.3791/56756
  4. Cai, Z., G. Xing, X. Yan, H. Xu, H. Tsuruta, K. Yagi, and K. Minami, 1997: Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196, 7-14. https://doi.org/10.1023/A:1004263405020
  5. Denmead, O. T., 1979: Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Science Society of America Journal 43(1), 89-95. https://doi.org/10.2136/sssaj1979.03615995004300010016x
  6. Ellision, S. L. R., B. J. Barwick, and T. J. Duguid Farrat, 2009: Practical Statistics for the Analytical Scientist-A Bench Guide, 2nd ed., RSC Publishing, LGC, 155-156.
  7. GRA (Global Research Alliance on Agricultural Greenhouse Gases), 2015: Nitrous Oxide Chamber Methodology Guidelines, 146pp.
  8. GARES (Gyeong gi-do Agricultural Research and Extension Services), 2018: Agricultural Environment Experimental Analysis Method, 431pp. (in Korean)
  9. GIR (Greenhouse gas Inventory and Research Center of Korea), 2020: National Greenhouse Gas Inventory Report of Korea, 438pp. (in Korean)
  10. IPCC (Intergovernmental Panel on Climate Change), 2019: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 4, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). IPCC Published, Switzerland.
  11. Ju, O. J., Kang N. K., and Lim G. J, 2020: Measurement Uncertainty of Methane Concentrations from a Rice Paddy Measured by a Closed Automated Chamber System. Korean Journal of Environmental Agriculture 39(3), 228-236. (in Korean with English abstract) https://doi.org/10.5338/KJEA.2020.39.3.27
  12. Kim, G. Y., Park S. I., B. H. Song, and Y. K. Shin, 2002: Emission Characteristics of Methane and Nitrous Oxide by Management of Water and Nutrient in a Rice Paddy Soil. Korean Journal of Environmental Agriculture 21(2), 136-143. https://doi.org/10.5338/KJEA.2002.21.2.136
  13. Kim, G. Y., H. C. Jeong, O. K. Ju, H. K. Kim, J. H. Park, H. S. Gwon, and P. J. Kim, 2013: Establishment of Baseline Emission Factor of Methane in Korean Rice Paddy Soil. Korean Journal of Environmental Agriculture 32(4), 359-365. (in Korean with English abstract) https://doi.org/10.5338/KJEA.2013.32.4.359
  14. Kim G. Y., W. K. Park, H. C. Jeong, S. I. Lee, E. J. Choi, P. J. Kim, Y. H. Seo, and U. S. Na, 2015: A Revised Estimate of N2O Emission Factor for Spring Chinese cabbage fields in Korea. Korean Journal of Agricultural and Forest Meteorology 17(4), 326-332. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.4.326
  15. Levy, P. E., A. Gray, S. R. Leeson, J. Gaiawyn, M. P. C. Kelly, M. D. A. Cooper, K. J. Dinsmore, S. K. Jones, and L. J. Sheppard, 2011: Quantification of uncertainty in trace gas fluxes measured by the static chamber method. European Journal of Soil Science 62, 811-821. https://doi.org/10.1111/j.1365-2389.2011.01403.x
  16. Livingston, G. P., and G. L. Hutchinson, 1995: Enclosure-based measurement of trace gas exchange: Applications and sources of error. In P.A. Matson and R.C. Harris (ed.) Biogenic trace gases: Measuring emissions from soil and water. 14-51. Blackwell Science, Oxford, UK.
  17. Matthias A.D., A.M. Blackmer, and J. M. Bremner, 1980: A simple Chamber Technique for field measurement of emissions of nitrous oxide from soils. Journal of Environmental Quality 9(2), 251-256. doi.org/10.2134/jeq1980.00472425000900020017x.
  18. Minamikawa, K., T. Tokida, S. Sudo, A. Padre, and K. Yagi, 2015: Guidelines for measuring CH4 and N2O emissions from rice paddies by a manually operated closed chamber method. National Institute for Agro-Environmental Sciences, Tsukuba, Japan.
  19. NAS (National Institute of Agricultural Sciences), 2000: Soil and Plant Analysis, 202pp. (in Korean)
  20. NAS (National Institute of Agricultural Sciences), 2017: Fertilizer Prescription Standard by Crop, 336pp. (in Korean)
  21. Nishimura, S., T. Sawamoto, H. Akiyama, S. Sudo, and K. Yagi, 2004: Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Global Biogeochemical cycles 18, GB2017, doi: 10.1029/2003GB002207.
  22. Parkin, T. B., R. T. Venterea, and S. K. Hargreaves, 2012: Calculating the detection limits of chamber-based soil greenhouse gas flux measurement. Journal of Environmental Quality 41, 705-715. https://doi.org/10.2134/jeq2011.0394
  23. Pavelka, M., M. Acosta, R Kieses, N. Altimir, C. Brummer, P. Crill, E. Darenova, R. Fub, B. Gieleln, A. Graf, L. Klemedtsson, A. Lohila, B. Longdoz, A. Lindroth, M. Nilsson, S. M. Jimenez, L. Merbold, L. Montagnani, M .Peichl, M. Pihlatie, J. Pumpanen, P. S. Ortiz, H. Silvernnoinen, U. Skiba, P. Vestin, P. Weslien, D. Janous, and W. Kutsch, 2018: Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. International Agrophysics 32, 569-587. https://doi.org/10.1515/intag-2017-0045
  24. Shang, Q, X. Yang, C Gao, P. Wu, J. Liu, Y Xu, Q Shen, J. Zou, and S. Guo, 2010: Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiment. Global change biology 17(6), 2196-2210. https://doi.org/10.1111/j.1365-2486.2010.02374.x
  25. Shcherbak, I, N. Millar, and G. P. Robertson, 2014: Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. PNAS 25(111), 9199-9204. https://doi.org/10.1073/pnas.1322434111
  26. Smith, C. J., M. Brandon, and W. H. Patrick Jr., 1982: Nitrous oxide emission following urea-N fertilization of wetland rice. Soil Science and Plant Nutrition 28(2), 161-171. https://doi.org/10.1080/00380768.1982.10432433
  27. USDA-ARS (U.S. Department of Agriculture, Agricultural Research Service), 2010: USDA-ARS GRACEnet Project Protocols, Chapter 3. Chamber-based Trace Gas Flux Measurements, 39pp.