DOI QR코드

DOI QR Code

Nondestructive tests for defections detection of nanoparticles in cement-based materials: A review

  • Kaloop, Mosbeh R. (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Elrahman, Mohamed Abd (Structural Engineering Department, Mansoura University) ;
  • Hu, Jong Wan (Department of Civil and Environmental Engineering, Incheon National University)
  • Received : 2021.03.09
  • Accepted : 2021.08.30
  • Published : 2022.01.25

Abstract

To date, nondestructive tests (NDT) applications and advances in detecting the dispersion and defections of the nano concrete (NC) materials fields are very limited. The current paper provides a review of the dispersion efficiency of nanomaterials in cement-based materials and how NDT can be efficiently used in detecting and visualizing the defections and dispersions of NC. The review identifies the characteristics of different types of nanoparticles used in NC. Nanomaterials influences on concrete characteristics and their dispersion degree are presented and discussed. The main aim of this article is to present and compare the common NDT that can be used for detecting and visualizing the defections and dispersions of different kinds of nanomaterials utilized in NC. The different microscopy and X-ray methods are explicitly reviewed and compared. Based on the collected data, it can be concluded that the fully detecting and visualizing of NC defections and dispersions have not been fully discovered and that needs further investigations. So, the distinction of this paper lies in defining NDT that can be employed for detecting and/or visualizing NC defections and dispersions.

Keywords

Acknowledgement

This work was supported by Incheon National University Research Concentration Professors Grant in 2020.

References

  1. Abbas, R. (2009), "Influence of nano-silica addition on properties of conventional and ultra-high performance concretes", Hous. Build. Natl. Res. Cent. J., 5(1), 18-30.
  2. Abd Elrahman, M., El Madawy, M.E., Chung, S.Y., Majer, S., Youssf, O. and Sikora, P. (2020), "An investigation of the mechanical and physical characteristics of cement paste incorporating different air entraining agents using X-ray micro-computed tomography", Crystals, 10(1), 23. https://doi.org/10.3390/cryst10010023.
  3. AFM(2020), AFM: Exploring Tapping Mode and AM-FM; Oxford instruments, Oxford, U.K. https://afm.oxinst.com/outreach/tapping-mode-for-afm-am-fm.
  4. Ahmed, H., Bogas, J.A., Guedes, M. and Pereira, M.F.C. (2019), "Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites", Mag. Concr. Res., 71(8), 408-423. https://doi.org/10.1680/jmacr.17.00562.
  5. Ahmed, H., Lee, Y.J. and Lee, J.R. (2020), "Development of rotational pulse-echo ultrasonic propagation imaging system capable of inspecting cylindrical specimens", Smart Struct. Syst. 26(5), 657-666. https://doi.org/10.12989/sss.2020.26.5.657.
  6. Ahmed, S., Schumacher, T., Thostenson, E.T. and McConnell, J. (2020), "Performance evaluation of a carbon nanotube sensor for fatigue crack monitoring of metal structures", Sensors, 20(16), 4383. https://doi.org/10.3390/s20164383.
  7. Ahn, P., Zhang, Z., Sun, C. and Balogun, O. (2013), "Ultrasonic near-field optical microscopy using a plasmonic nanofocusing probe", J. Appl. Phys., 113(23), 234903. https://doi.org/10.1063/1.4810925.
  8. Al-Jabri, K. and Shoukry, H. (2014), "Use of nano-structured waste materials for improving mechanical, physical and structural properties of cement mortar", Constr. Build. Mater., 73, 636-644. https://doi.org/10.1016/j.conbuildmat.2014.10.004.
  9. Almajhadi, M. and Wickramasinghe, H.K. (2017), "Contrast and imaging performance in photo induced force microscopy", Opt. Express, 25(22), 26923. https://doi.org/10.1364/OE.25.026923.
  10. Aly, M., Hashmi, M.S.J., Olabi, A.G., Messeiry, M., Abadir, E.F. and Hussain, A.I. (2012), "Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar", Mater. Des., 33, 127-135. https://doi.org/10.1016/j.matdes.2011.07.008.
  11. Amin, M.S., El-Gamal, S.M.A. and Hashem, F.S. (2015), "Fire resistance and mechanical properties of carbon nanotubes - clay bricks wastes (Homra) composites cement", Constr. Build. Mater., 98, 237-249. https://doi.org/10.1016/j.conbuildmat.2015.08.074.
  12. Arefi, A., Saghravani, S.F. and Mozaffari Naeeni, R. (2016), "Mechanical behavior of concrete, made with micro-nano air bubbles", Civ. Eng. Infrastruct. J., 49(1), 139-147. https://doi.org/10.7508/ceij.2016.01.010.
  13. Angeloni, L., Reggente, M., Passeri, D., Natali, M. and Rossi, M. (2018), "Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy", Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 10(6), e1521. https://doi.org/10.1002/wnan.1521.
  14. Arel, H.S. and Thomas, B.S. (2017), "The effects of nano- and micro-particle additives on the durability and mechanical properties of mortars exposed to internal and external sulfate attacks", Results Phys., 7, 843-851. https://doi.org/10.1016/j.rinp.2017.02.009.
  15. Aryan, P., Sampath, S. and Sohn, H. (2018), "An overview of nondestructive testing methods for integrated circuit packaging inspection", 18(7), 1981. https://doi.org/10.3390/s18071981.
  16. Ashok, M., Parande, A.K. and Jayabalan, P. (2017), "Strength and durability study on cement mortar containing nano materials", Adv. Nano Res., 5(2), 99-111. https://doi.org/10.12989/anr.2017.5.2.099.
  17. Atahan, H.N. and Dikme, D. (2011), "Use of mineral admixtures for enhanced resistance against sulfate attack", Constr. Build. Mater., 25(8), 3450-3457. https://doi.org/10.1016/j.conbuildmat.2011.03.036.
  18. Bai, S., Jiang, L., Xu, N., Jin, M. and Jiang, S. (2018), "Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume", Constr. Build. Mater., 164, 433-441. https://doi.org/10.1016/j.conbuildmat.2017.12.176.
  19. Balazs, G.L., Lubloy, E. and Foldes, T. (2018), "Evaluation of concrete elements with X-ray computed tomography", J. Mater. Civ. Eng., 30(9), 06018010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002389.
  20. Balke, N. and Tselev, A. (2018), Functional Material Properties of Oxide Thin Films Probed by Atomic Force Microscopy on the Nanoscale in Metal Oxide-Based Thin Film Structures, Elsevier, 181-201. https://doi.org/10.1016/B978-0-12-811166-6.00008-X.
  21. Balzar, D. (1993), "X-ray diffraction line broadening: Modeling and applications to high-Tc superconductors", J. Res. Natl. Inst. Stand. Technol., 98(3), 321. https://doi.org/10.6028/jres.098.026.
  22. Ban, C.C., Khalaf, M.A., Ramli, M., Ahmed, N.M., Abunahel, B.M., Dawood, E.T. and Ameri, F. (2020), "Effect of nano-silica slurry on engineering, X-ray and γ-ray attenuation characteristics of steel slag high-strength heavyweight concrete", Nanotechnol. Rev., 9(1), 1245-1264. https://doi.org/10.1515/ntrev-2020-0098.
  23. Barreto, M. and Brandao, P. (2014), "Micro and nanostructureal characteristization of surface and interfaces of portland cement mortars using atomic force microscopy", Proceeding of the 21o CBECIMAT - Congr. Bras. Eng. e Ciencia dos Mater, Cuiaba, MT, Brasil, November. https://doi.org/10.2466/pr0.1981.48.1.335.
  24. Behfarnia, K. and Salemi, N. (2013), "The effects of nano-silica and nano-alumina on frost resistance of normal concrete", Constr. Build. Mater., 48, 580-584. https://doi.org/10.1016/j.conbuildmat.2013.07.088.
  25. Bentz, D.P., Garboczi, E.J., Haecker, C.J. and Jensen, O.M. (1999), "Effects of cement particle size distribution on performance properties of Portland cement-based materials", Cement Concrete Res., 29(10), 1663-1671. https://doi.org/10.1016/S0008-8846(99)00163-5.
  26. Bernardes, E.E., Mantilla Carrasco, E.V., Vasconcelos, W.L. and de Magalhaes, A.G. (2015), "X-ray microtomography (μ-CT) to analyze the pore structure of a Portland cement composite based on the selection of different regions of interest", Constr. Build. Mater., 95, 703-709. https://doi.org/10.1016/j.conbuildmat.2015.07.128.
  27. Bertocci, F., Grandoni, A. and Djuric-Rissner, T. (2019), "Scanning acoustic microscopy (SAM): A robust method for defect detection during the manufacturing process of ultrasound probes for medical imaging", 19(22), 4868. https://doi.org/10.3390/s19224868.
  28. Bisht, K., Siddique, S. and Ramana, P.V. (2019), "Employing atomic force microscopy technique and X-ray diffraction analysis to examine nanostructure and phase of glass concrete", Eur. J. Environ. Civ. Eng., 1-19. https://doi.org/10.1080/19648189.2019.1677506.
  29. Bordelon, A.C. and Roesler, J.R. (2014), "Spatial distribution of synthetic fibers in concrete with X-ray computed tomography", Cement Concrete Compos., 53, 35-43. https://doi.org/10.1016/j.cemconcomp.2014.04.007.
  30. Bossa, N., Chaurand, P., Vicente, J., Borschneck, D., Levard, C., Aguerre-Chariol, O. and Rose, J. (2015), "Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste", Cement Concrete Res., 67, 138-147. https://doi.org/10.1016/j.cemconres.2014.08.007.
  31. Brisard, S., Serdar, M. and Monteiro, P.J.M. (2020), "Multiscale X-ray tomography of cementitious materials: A review", Cement Concrete Res., 128, 105824. https://doi.org/10.1016/j.cemconres.2019.105824.
  32. Broughton, W.R. and Nunn, J. (2006), "Non-invasive methods for monitoring microstructural condition of materials", Report No. DEPC-MPE 032; National Physical Laboratory, U.K.
  33. Chae, S.R., Moon, J., Yoon, S., Bae, S., Levitz, P., Winarski, R. and Monteiro, P.J.M. (2013), "Advanced nanoscale characterization of cement based materials using X-Ray synchrotron radiation: A review", Int. J. Concr. Struct. Mater., 7(2), 95-110. https://doi.org/10.1007/s40069-013-0036-1.
  34. Chalangaran, N., Farzampour, A. and Paslar, N. (2020), "Nano silica and metakaolin effects on the behavior of concrete containing rubber crumbs", CivilEng, 1(3), 264-274. https://doi.org/10.3390/civileng1030017.
  35. Chandrasekaran, V. (2019), "Tomography of reinforced concrete", Mater. Des. Process. Commun., 1(6), e92. https://doi.org/10.1002/mdp2.92.
  36. Chen, B., Lin, W., Liu, X., Iacoviello, F., Shearing, P. and Robinson, I. (2019), "Pore structure development during hydration of tricalcium silicate by X-ray nano-imaging in three dimensions", Constr. Build. Mater., 200, 318-323. https://doi.org/10.1016/j.conbuildmat.2018.12.120.
  37. Chu, H., Jiang, J., Sun, W. and Zhang, M. (2017), "Mechanical and thermal properties of graphene sulfonate nanosheet reinforced sacrificial concrete at elevated temperatures", Constr. Build. Mater., 153, 682-694. https://doi.org/10.1016/j.conbuildmat.2017.07.157.
  38. Chuah, S., Li, W., Chen, S.J., Sanjayan, J.G. and Duan, W.H. (2018), "Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments", Constr. Build. Mater., 161, 519-527. https://doi.org/10.1016/j.conbuildmat.2017.11.154.
  39. Chung, S.Y., Han, T.S., Yun, T.S. and Youm, K.S. (2013), "Evaluation of the anisotropy of the void distribution and the stiffness of lightweight aggregates using CT imaging", Constr. Build. Mater., 48, 998-1008. https://doi.org/10.1016/j.conbuildmat.2013.07.082.
  40. Chung, S.Y., Han, T.S. and Kim, S.Y. (2015), "Reconstruction and evaluation of the air permeability of a cement paste specimen with a void distribution gradient using CT images and numerical methods", Constr. Build. Mater., 87, 45-53. https://doi.org/10.1016/j.conbuildmat.2015.03.103.
  41. Chung, S.Y., Elrahman, M.A., Stephan, D. and Kamm, P.H. (2016), "Investigation of characteristics and responses of insulating cement paste specimens with Aer solids using X-ray micro-computed tomography", Constr. Build. Mater., 118, 204-215. https://doi.org/10.1016/j.conbuildmat.2016.04.159.
  42. Chung, S.Y., Lehmann, C., Abd Elrahman, M. and Stephan, D. (2017), "Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches", Appl. Sci., 7(6), 550. https://doi.org/10.3390/app7060550.
  43. Collins, F., Lambert, J. and Duan, W.H. (2012), "The influences of admixtures on the dispersion, workability and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(2), 201-207. https://doi.org/10.1016/j.cemconcomp.2011.09.013.
  44. Cosoli, G., Mobili, A., Tittarelli, F., Revel, G.M. and Chiariotti, P. (2020), "Electrical resistivity and electrical impedance measurement in mortar and concrete elements: A systematic review", Appl. Sci. 10(24), 9152. https://doi.org/10.3390/app10249152.
  45. Cuberes, M.T. (2008), Mechanical Diode-Based Ultrasonic Atomic Force Microscopies, in Applied Scanning Probe Methods XI, Springer, Berlin, Germany, 39-71. https://doi.org/10.1007/978-3-540-85037-3_3.
  46. Darma, I.S., Sugiyama, T. and Promentilla, M.A.B. (2013), "Application of X-Ray CT to study diffusivity in cracked concrete through the observation of tracer transport", J. Adv. Concr. Technol., 11(10), 266-281. https://doi.org/10.3151/jact.11.266.
  47. Dewar, J. (2003), "Concrete mix design", Adv. Concr. Technol., 3-40. https://doi.org/10.1016/B978-075065686-3/50287-1.
  48. Dong, W., Li, W., Lu, N., Qu, F., Vessalas, K. and Sheng, D. (2019), "Piezoresistive behaviours of cement-based sensor with carbon black subjected to various temperature and water content", Compos. Part B Eng., 178, 107488. https://doi.org/10.1016/j.compositesb.2019.107488.
  49. Dong, W., Li, W., Tao, Z. and Wang, K. (2019), "Piezoresistive properties of cement-based sensors: Review and perspective", Constr. Build. Mater., 203, 146-163. https://doi.org/10.1016/j.conbuildmat.2019.01.081.
  50. Dong, W., Li, W., Wang, K., Luo, Z. and Sheng, D. (2020), "Self-sensing capabilities of cement-based sensor with layer-distributed conductive rubber fibres", Sensor Actuat. A Phys., 301, 111763. https://doi.org/10.1016/j.sna.2019.111763.
  51. Dong, W., Li, W., Luo, Z., Long, G., Vessalas, K. and Sheng, D. (2020), "Structural response monitoring of concrete beam under flexural loading using smart carbon black/cement-based sensors", Smart Mater. Struct., 29(6), 065001. https://doi.org/10.1088/1361-665X/ab7fef.
  52. Dong, Y., Su, C., Qiao, P. and Sun, L. (2018), "Microstructural damage evolution and its effect on fracture behavior of concrete subjected to freeze-thaw cycles", Int. J. Damage Mech., 27(8), 1272-1288. https://doi.org/10.1177/1056789518787025.
  53. Dong, Y.C., Hajfathalian, M., Maidment, P.S.N., Hsu, J.C., Naha, P.C., Si-Mohamed, S., Breuilly, M., Kim, J., Chhour, P., Douek, P., Litt, H.I and Cormode, D.P. (2019), "Effect of gold nanoparticle size on their properties as contrast agents for computed tomography", Sci. Rep., 9(1), 14912. https://doi.org/10.1038/s41598-019-50332-8.
  54. Du, S., Wu, J., AlShareedah, O. and Shi, X. (2019), "Nanotechnology in cement-based materials: A review of durability, modeling and advanced characterization", 9(9), 1213. https://doi.org/10.3390/nano9091213.
  55. Dufrene, Y.F. ando, T., Garcia, R., Alsteens, D., Martinez-Martin, D., Engel, A., Gerber, C., Muller, D.J. (2017), "Imaging modes of atomic force microscopy for application in molecular and cell biology", Nat. Nanotechnol., 12(4), 295-307. https://doi.org/10.1038/nnano.2017.45.
  56. Eaton, P., Quaresma, P., Soares, C., Neves, C., de Almeida, M.P., Pereira, E. and West, P. (2017), "A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles", Ultramicroscopy, 182, 179-190. https://doi.org/10.1016/j.ultramic.2017.07.001.
  57. El-Gamal, S.M.A., Abo-El-Enein, S.A., El-Hosiny, F.I., Amin, M.S. and Ramadan, M. (2018), "Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles", J. Therm. Anal. Calorim., 131(2), 949-968. https://doi.org/10.1007/s10973-017-6629-1.
  58. Eldessouki, M. and Abdelkader, M. (2019), "Computed tomography for fibrous materials, recent trends in fibrous material science", Technical University of Liberec, Liberec, Czech Republic.
  59. Eva, Z., Kamila, H., Tereza, K., Patrik, S., Jiri, S. and Ondrej, A. (2020), "Ndt methods suitable for evaluation the condition of military fortification construction in the field", Appl. Sci. 10(22), 8161. https://doi.org/10.3390/app10228161.
  60. Fan, Y., Zhang, S., Wang, Q. and Shah, S.P. (2015), "Effects of nano-kaolinite clay on the freeze-thaw resistance of concrete", Cement Concrete Compos., 62, 1-12. https://doi.org/10.1016/j.cemconcomp.2015.05.001.
  61. Fan, Y., Zhang, S., Wang, Q. and Shah, S.P. (2016), "The effects of nano-calcined kaolinite clay on cement mortar exposed to acid deposits", Constr. Build. Mater., 102, 486-495. https://doi.org/10.1016/j.conbuildmat.2015.11.016.
  62. Farzampour, A. (2017), "Temperature and humidity effects on behavior of grouts", Adv. Concr. Constr., 5(6), 659-669. https://doi.org/10.12989/acc.2017.5.6.659.
  63. Farzampour, A. (2020), Compressive Behavior of Concrete under Environmental Effects, in Compressive Strength of Concrete. IntechOpen, London, U.K.
  64. Feng, P., Chang, H., Liu, X., Ye, S., Shu, X. and Ran, Q. (2020), "The significance of dispersion of nano-SiO2 on early age hydration of cement pastes", Mater. Des., 186, 108320. https://doi.org/10.1016/j.matdes.2019.108320.
  65. Ferrari, L., Kaufmann, J., Winnefeld, F. and Plank, J. (2010), "Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential and adsorption measurements", J. Colloid Interf. Sci., 347(1), 15-24. https://doi.org/10.1016/j.jcis.2010.03.005.
  66. Fibikar, S., Rinke, M.T., Schafer, A. and Cola, L. De (2010), "Quantification of cation-exchanged zeolites by XPS and EDS: A comparative study", Micropor. Mesopor. Mater., 132(1-2), 296-299. https://doi.org/10.1016/j.micromeso.2010.02.016.
  67. Fu, D., Park, K., Delen, G., Attila, O ., Meirer, F., Nowak, D., Park, S., Schmidt, J.E. and Weckhuysen, B.M. (2017), "Nanoscale infrared imaging of zeolites using photoinduced force microscopy", Chem. Commun., 53(97), 13012-13014. https://doi.org/10.1039/C7CC06832H.
  68. Gesoglu, M., Guneyisi, E., Asaad, D.S. and Muhyaddin, G.F. (2016), "Properties of low binder ultra-high performance cementitious composites: Comparison of nanosilica and microsilica", Constr. Build. Mater., 102, 706-713. https://doi.org/10.1016/j.conbuildmat.2015.11.020.
  69. Ghafari, E., Costa, H., Julio, E., Portugal, A. and Duraes, L. (2014), "The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete", Mater. Des., 59, 1-9. https://doi.org/10.1016/j.matdes.2014.02.051.
  70. Ghafari, E., Arezoumandi, M., Costa, H. and Julio, E. (2015a), "Influence of nano-silica addition on durability of UHPC", Constr. Build. Mater., 94, 181-188. https://doi.org/10.1016/j.conbuildmat.2015.07.009.
  71. Ghafari, E., Costa, H. and Julio, E. (2015b), "Critical review on eco-efficient ultra high performance concrete enhanced with nano-materials", Constr. Build. Mater., 101, 201-208. https://doi.org/10.1016/j.conbuildmat.2015.10.066.
  72. Ghafoori, N., Batilov, I.B. and Najimi, M. (2016), "Sulfate resistance of nanosilica and microsilica contained mortars", ACI Mater. J., 113(4). https://doi.org/10.14359/51688989.
  73. Gonzalez, J.F., Antartis, D.A., Chasiotis, I., Dillon, S.J. and Lambros, J. (2018), "In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation", J. Power Sources, 381, 181-189. https://doi.org/10.1016/j.jpowsour.2018.01.056.
  74. Gonzalez, M., Tighe, S.L., Hui, K., Rahman, S. and de Oliveira Lima, A. (2016), "Evaluation of freeze/thaw and scaling response of nanoconcrete for Portland Cement Concrete (PCC) pavements", Constr. Build. Mater., 120, 465-472. https://doi.org/10.1016/j.conbuildmat.2016.05.043.
  75. Gopalakrishnan, K., Ceylan, H. and Inanc, F. (2007), "Using X-ray computed tomography to study paving materials", Proceedings of the Institution of Civil Engineers-Construction Materials, 160(1), 15-23. https://doi.org/10.1680/coma.2007.160.1.15.
  76. Guo, R., Suo, Y., Xia, H., Yang, Y., Ma, Q. and Yan, F. (2021), "Study of piezoresistive behavior of smart cement filled with graphene oxide", Nanomaterials, 11(1), 206. https://doi.org/10.3390/nano11010206.
  77. Hamed, N., El-Feky, M.S., Kohail, M. and Nasr, E.S.A.R. (2019), "Effect of nano-clay de-agglomeration on mechanical properties of concrete", Constr. Build. Mater., 205, 245-256. https://doi.org/10.1016/j.conbuildmat.2019.02.018.
  78. Hanke, R., Fuchs, T., Salamon, M. and Zabler, S. (2016), X-ray Microtomography for Materials Characterization, in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Woodhead Publishing, Sawston, U.K. https://doi.org/10.1016/B978-0-08-100040-3.00003-1.
  79. Heenan, T.M.M., Finegan, D.P., Tjaden, B., Lu, X., Iacoviello, F., Millichamp, J., Brett, D.J.L., Shearing, P.R. (2018), "4D nanotomography of electrochemical energy devices using lab-based X-ray imaging", Nano Energy, 47, 556-565. https://doi.org/10.1016/j.nanoen.2018.03.001.
  80. Heikal, M., Ismail, M.N. and Ibrahim, N.S. (2015), "Physicomechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles", Constr. Build. Mater., 91, 232-242. https://doi.org/10.1016/j.conbuildmat.2015.05.036.
  81. Hirsekorn, S., Rabe, U. and W.Arnold (1996), "Near-field acoustic microscopy", Europhys. News, 27, 93-96. https://doi.org/10.1051/epn/19962703093
  82. Horszczaruk, E., Sikora, P., Cendrowski, K. and Mijowska, E. (2017), "The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates", Constr. Build. Mater., 137, 420-431. https://doi.org/10.1016/j.conbuildmat.2017.02.003.
  83. Horszczaruk, E., Aleksandrzak, M., Cendrowski, K., Jedrzejewski, R., Baranowska, J. and Mijowska, E. (2020), "Mechanical properties cement based composites modified with nano-Fe3O4/SiO2", Constr. Build. Mater., 251, 118945. https://doi.org/10.1016/j.conbuildmat.2020.118945.
  84. Hurley, D.C., Kopycinska-Muller, M., Kos, A.B. and Geiss, R.H. (2005), "Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods", Meas. Sci. Technol., 16(11), 2167-2172. https://doi.org/10.1088/0957-0233/16/11/006.
  85. Hurley, D.C., Kopycinska-Muller, M., Langlois, E.D., Kos, A.B. and Barbosa, N. (2006), "Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy", Appl. Phys. Lett., 89(2), 021911. https://doi.org/10.1063/1.2221404.
  86. Irshidat, M.R. and Al-Saleh, M.H. (2018), "Thermal performance and fire resistance of nanoclay modified cementitious materials", Constr. Build. Mater., 159, 213-219. https://doi.org/10.1016/j.conbuildmat.2017.10.127.
  87. Jacobsen, C. and Kirz, J. (1998), "X-ray microscopy with synchrotron radiation", Nat. Struct. Biol., 5(8), 650-653. https://doi.org/10.1038/1341.
  88. Jahng, J., Fishman, D.A., Park, S., Nowak, D.B., Morrison, W.A., Wickramasinghe, H.K. and Potma, E.O. (2015), "Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy", Acc. Chem. Res., 48(10), 2671-2679. https://doi.org/10.1021/acs.accounts.5b00327.
  89. Jahng, J. (2015) "Photo-induced force microscopy and spectroscopy", Master Thesis, University of California Irvine, Irvine.
  90. Ji, T. (2005), "Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2", Cement Concrete Res., 35(10), 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004.
  91. Jin, H., Lu, W.Y., Cordill, M.J. and Schmidegg, K. (2011), "In situ Study of Cracking and Buckling of Chromium Films on PET Substrates", Exp. Mech., 51(2), 219-227. https://doi.org/10.1007/s11340-010-9359-x.
  92. Jindal, B.B. and Sharma, R. (2020), "The effect of nanomaterials on properties of geopolymers derived from industrial byproducts: A state-of-the-art review", Constr. Build. Mater., 252, 119028. https://doi.org/10.1016/j.conbuildmat.2020.119028.
  93. Jing, H. and Yu, W. (2017), "Microstructure of cotton fibrous assemblies based on computed tomography", Proceeding of the IOP Conference Series: Materials Science and Engineering, 274(1), 012059. https://doi.org/10.1088/1757-899X/274/1/012059.
  94. Jung, M., Hong, S. and Moon, J. (2020), "Ozone treatment on the dispersion of carbon nanotubes in ultra-high performance concrete", Mater. Des., 193, 108813. https://doi.org/10.1016/j.matdes.2020.108813.
  95. Kalyan Phani, M., Kumar, A., Arnold, W. and Samwer, K. (2016), "Elastic stiffness and damping measurements in titanium alloys using atomic force acoustic microscopy", J. Alloys Compd., 676, 397-406. https://doi.org/10.1016/j.jallcom.2016.03.155.
  96. Kawashima, S., Seo, J.-W.T., Corr, D., Hersam, M.C. and Shah, S.P. (2014), "Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems", Mater. Struct., 47(6), 1011-1023. https://doi.org/10.1617/s11527-013-0110-9.
  97. Khan, M.K., Wang, Q.Y. and Fitzpatrick, M.E. (2016), "Atomic force microscopy (AFM) for materials characterization", in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Wooheas Publishing, Sawstaon, U.K. https://doi.org/10.1016/B978-0-08-100040-3.00001-8.
  98. Khayat, K.H., Meng, W., Vallurupalli, K. and Teng, L. (2019), "Rheological properties of ultra-high-performance concrete - An overview", Cement Concrete Res., 124, 105828. https://doi.org/10.1016/j.cemconres.2019.105828.
  99. Kim, B. and Potma, E.O. (2019), "Laser heating of cantilevered tips: Implications for photoinduced force microscopy", Phys. Rev. B, 100(19), 195416. https://doi.org/10.1103/PhysRevB.100.195416.
  100. Kim, H., Choi, Hyeonggil, Choi, Heesup, Lee, B., Lee, D. and Lee, D.E. (2020), "Study on physical properties of mortar for section restoration using calcium nitrite and CO2 nano-bubble water", Materials, 13(17), 3897. https://doi.org/10.3390/ma13173897.
  101. Kim, J.H., Balogun, O. and Shah, S.P. (2010), "Atomic force acoustic microscopy to measure nanoscale mechanical properties of cement pastes", Transp. Res. Rec., 2141(1), 102-108. https://doi.org/10.3141/2141-17.
  102. Kim, K.Y., Yun, T.S., Choo, J., Kang, D.H. and Shin, H.S. (2012), "Determination of air-void parameters of hardened cement-based materials using X-ray computed tomography", Constr. Build. Mater., 37, 93-101. https://doi.org/10.1016/j.conbuildmat.2012.07.012.
  103. Kimura, K., Kobayashi, K., Matsushige, K. and Yamada, H. (2013), "Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques", Ultramicroscopy, 133, 41-49. https://doi.org/10.1016/j.ultramic.2013.04.003.
  104. Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y. and Shah, S.P. (2012), "Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials", Constr. Build. Mater., 37, 707-715. https://doi.org/10.1016/j.conbuildmat.2012.08.006.
  105. Korayem, A.H., Tourani, N., Zakertabrizi, M., Sabziparvar, A.M. and Duan, W.H. (2017), "A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective", Constr. Build. Mater., 153, 346-357. https://doi.org/10.1016/j.conbuildmat.2017.06.164.
  106. Kutschera, M., Nicoleau, L. and Brau, M. (2011), Nano-optimized Construction Materials by Nano-seeding and Crystallization Control in Nanotechnology in Civil Infrastructure, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-16657-0_6.
  107. Lavergne, F., Belhadi, R., Carriat, J. and Ben Fraj, A. (2019), "Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste", Cement Concrete Compos., 95, 42-55. https://doi.org/10.1016/j.cemconcomp.2018.10.007.
  108. Lee, S.J., You, I., Zi, G. and Yoo, D.Y. (2017), "Experimental investigation of the piezoresistive properties of cement composites with hybrid carbon fibers and nanotubes", Sensors, 17(11), 2516. https://doi.org/10.3390/s17112516.
  109. Leite, M.B. and Monteiro, P.J.M. (2016), "Microstructural analysis of recycled concrete using X-ray microtomography", Cement Concrete Res., 81, 38-48. https://doi.org/10.1016/j.cemconres.2015.11.010.
  110. Li, X., Korayem, A.H., Li, C., Liu, Y., He, H., Sanjayan, J.G. and Duan, W.H. (2016), "Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength", Constr. Build. Mater., 123, 327-335. https://doi.org/10.1016/j.conbuildmat.2016.07.022.
  111. Li, Y., Li, H., Wang, Z. and Jin, C. (2020), "Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C-S-H gel", Cement Concrete Res., 128, 105955. https://doi.org/10.1016/j.cemconres.2019.105955.
  112. Lim, S. and Mondal, P. (2015), "Effects of nanosilica addition on increased thermal stability of cement-based composite", ACI Mater. J., 112(2). https://doi.org/10.14359/51687177.
  113. Lu, H. (2017), "X-ray computed tomography assessment of air void distribution in concrete by X-ray computed tomography assessment of air void distribution in concrete", PhD thesis, University of, Toronto, Toronto.
  114. Lu, Z., Li, X., Hanif, A., Chen, B., Parthasarathy, P., Yu, J. and Li, Z. (2017), "Early-age interaction mechanism between the graphene oxide and cement hydrates", Constr. Build. Mater., 152, 232-239. https://doi.org/10.1016/j.conbuildmat.2017.06.176.
  115. Ma, C., Chen, Y., Arnold, W. and Chu, J. (2017), "Detection of subsurface cavity structures using contact-resonance atomic force microscopy", J. Appl. Phys., 121(15), 154301. https://doi.org/10.1063/1.4981537.
  116. Mahdikhani, M., Bamshad, O. and Fallah Shirvani, M. (2018), "Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition", Constr. Build. Mater. 167, 929-935. https://doi.org/10.1016/j.conbuildmat.2018.01.137.
  117. Mansouri, I., Shahheidari, F.S., Hashemi, S.M.A. and Farzampour, A. (2020), "Investigation of steel fiber effects on concrete abrasion resistance", Adv. Concr. Constr., 9(4), 367-374. https://doi.org/10.12989/acc.2020.9.4.367.
  118. Marrese, M., Guarino, V. and Ambrosio, L. (2017), "Atomic force microscopy: A powerful tool to address scaffold design in tissue engineering", J. Funct. Biomater., 8(1), 7. https://doi.org/10.3390/jfb8010007.
  119. McGuigan, A.P., Huey, B.D., Briggs, G.A.D., Kolosov, O.V., Tsukahara, Y. and Yanaka, M. (2002), "Measurement of debonding in cracked nanocomposite films by ultrasonic force microscopy", Appl. Phys. Lett., 80(7), 1180-1182. https://doi.org/10.1063/1.1450058.
  120. Mendoza, O., Sierra, G. and Tobon, J.I. (2013), "Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications", Constr. Build. Mater., 47, 771-778. https://doi.org/10.1016/j.conbuildmat.2013.05.100.
  121. Mendoza, O., Sierra, G. and Tobon, J.I. (2014), "Effect of the reagglomeration process of multi-walled carbon nanotubes dispersions on the early activity of nanosilica in cement composites", Constr. Build. Mater., 54, 550-557. https://doi.org/10.1016/j.conbuildmat.2013.12.084.
  122. Meng, W. and Khayat, K.H. (2018), "Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties and microstructure of UHPC", Cement Concrete Res., 105, 64-71. https://doi.org/10.1016/j.cemconres.2018.01.001.
  123. Meng, Y., Liao, B., Pang, H., Zhang, J. and Song, L. (2019), "Cyclodextrin-modified polycarboxylate superplasticizers as dispersant agents for multiwalled carbon nanotubes", J. Appl. Polym. Sci., 136(16), 47311. https://doi.org/10.1002/app.47311.
  124. Mondal, P., Shah, S.P. and Marks, L. (2007), "A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials", Cement Concrete Res., 37(10), 1440-1444. https://doi.org/10.1016/j.cemconres.2007.07.001.
  125. Moon, J., Oh, J.E., Balonis, M., Glasser, F.P., Clark, S.M. and Monteiro, P.J.M. (2012), "High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO.Al2O3.CaCO3.11H2O", Cement Concrete Res., 42(1), 105-110. https://doi.org/10.1016/j.cemconres.2011.08.004.
  126. Morsy, M.S., Alsayed, S.H. and Aqel, M. (2011), "Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar", Constr. Build. Mater., 25(1), 145-149. https://doi.org/10.1016/j.conbuildmat.2010.06.046.
  127. Mourdikoudis, S., Pallares, R.M. and Thanh, N.T.K. (2018), "Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties", Nanoscale, 10(27), 12871-12934. https://doi.org/10.1039/C8NR02278J.
  128. Mu, R., Li, H., Qing, L., Lin, J. and Zhao, Q. (2017), "Aligning steel fibers in cement mortar using electro-magnetic field", Constr. Build. Mater., 131, 309-316. https://doi.org/10.1016/j.conbuildmat.2016.11.081.
  129. Naeimi, M., Li, Z., Qian, Z., Zhou, Y., Wu, J., Petrov, R.H., Sietsma, J. and Dollevoet, R. (2017), "Reconstruction of the rolling contact fatigue cracks in rails using X-ray computed tomography", NDT E Int., 92, 199-212. https://doi.org/10.1016/j.ndteint.2017.09.004.
  130. Nasrollahzadeh, M., Atarod, M., Sajjadi, M., Sajadi, S.M. and Issaabadi, Z. (2019), Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization and Applications, in Interface science and technology, Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00006-7.
  131. Nauman, S. (2021), "Piezoresistive sensing approaches for structural health monitoring of polymer composites-a review", Eng, 2(2), 197-226. https://doi.org/10.3390/eng2020013.
  132. Nik, A.S. and Bahari, A. (2011), "Nano-particles in concrete and cement mixtures", Appl. Mech. Mater., 110-116, 3853-3855. https://doi.org/10.4028/www.scientific.net/AMM.110-116.3853.
  133. Norhasri, M.S.M., Hamidah, M.S. and Fadzil, A.M. (2017), "Applications of using nano material in concrete: A review", Constr. Build. Mater., 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005.
  134. Nsengiyumva, W., Zhong, S., Lin, J., Zhang, Q., Zhong, J. and Huang, Y. (2021), "Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review", Compos. Struct. 256, 112951. https://doi.org/10.1016/j.compstruct.2020.112951.
  135. Oertel, T., Helbig, U., Hutter, F., Kletti, H. and Sextl, G. (2014), "Influence of amorphous silica on the hydration in ultra-high performance concrete", Cement Concrete Res., 58, 121-130. https://doi.org/10.1016/j.cemconres.2014.01.006.
  136. Oesch, T., Weise, F. and Bruno, G. (2020), "Detection and quantification of cracking in concrete aggregate through virtual data fusion of x-ray computed tomography images", Materials, 13(18), 3921. https://doi.org/10.3390/ma13183921.
  137. Ortega, E., Rodriguez-Martinez, O., Figueroa-Labastida, M., Villa-Pulido, A.A., Sanchez-Fernandez, A., Cue-Sampedro, R., Gracia-Pinilla, M.A., and Menchaca, J.L. (2016), "Long-term influence of chitin concentration on the resistance of cement pastes determined by atomic force microscopy", Phys. Status Solidi A, 213(12), 3110-3116. https://doi.org/10.1002/pssa.201600105.
  138. Parveen, S., Rana, S. and Fangueiro, R. (2013), "A review on nanomaterial dispersion, microstructure and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites", J. Nanomater., 2013, 1-19. https://doi.org/10.1155/2013/710175.
  139. Paul, S.C., van Rooyen, A.S., van Zijl, G.P.A.G. and Petrik, L.F. (2018), "Properties of cement-based composites using nanoparticles: A comprehensive review", Constr. Build. Mater., 189, 1019-1034. https://doi.org/10.1016/j.conbuildmat.2018.09.062.
  140. Peled, A., Castro, J. and Weiss, W.J. (2013), "Atomic force and lateral force microscopy (AFM and LFM) examinations of cement and cement hydration products", Cement Concrete Compos., 36, 48-55. https://doi.org/10.1016/j.cemconcomp.2012.08.021.
  141. Perez-Nicolas, M., Plank, J., Ruiz-Izuriaga, D., Navarro-Blasco, I., Fernandez, J.M. and Alvarez, J.I. (2018), "Photocatalytically active coatings for cement and air lime mortars: Enhancement of the activity by incorporation of superplasticizers", Constr. Build. Mater., 162, 628-648. https://doi.org/10.1016/j.conbuildmat.2017.12.087.
  142. Philip, M.A., Natarajan, U. and Nagarajan, R. (2014), "Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites", Adv. Nano Res., 2(2), 121-133. https://doi.org/10.12989/anr.2014.2.2.121.
  143. Piras, D., Neer, P., Es, M. and Marnani, H. (2020), "Methods of and system for performing subsurface imaging using vibration sensing", U.S. Patent Application, No. 16/477,479.
  144. du Plessis, A. and Boshoff, W.P. (2019), "A review of X-ray computed tomography of concrete and asphalt construction materials", Constr. Build. Mater., 199, 637-651. https://doi.org/10.1016/j.conbuildmat.2018.12.049.
  145. Powers, T.C. (1954), "Void space as a basis for producing airentrained concrete", ACI J. Proc., 50(5). https://doi.org/10.14359/11792.
  146. Provis, J.L., Rose, V., Bernal, S.A. and van Deventer, J.S.J. (2009), "High-resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali-activated fly ash", 25(19), 11897-11904. https://doi.org/10.1021/la901560h.
  147. Provis, J.L., Rose, V., Winarski, R.P. and van Deventer, J.S.J. (2011), "Hard X-ray nanotomography of amorphous aluminosilicate cements", Scr. Mater., 65(4), 316-319. https://doi.org/10.1016/j.scriptamat.2011.04.036.
  148. Puentes, J., Barluenga, G. and Palomar, I. (2014), "Effects of nano-components on early age cracking of self-compacting concretes", Constr. Build. Mater., 73, 89-96. https://doi.org/10.1016/j.conbuildmat.2014.09.061.
  149. Qian, Y. and De Schutter, G. (2018), "Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE)", Cement Concrete Res., 111, 15-22. https://doi.org/10.1016/j.cemconres.2018.06.013.
  150. Qin, L., Gao, X., Su, A. and Li, Q. (2021), "Effect of carbonation curing on sulfate resistance of cement-coal gangue paste", J. Clean. Prod., 278, 123897. https://doi.org/10.1016/j.jclepro.2020.123897.
  151. Qsymah, A., Sharma, R., Yang, Z., Margetts, L. and Mummery, P. (2017), "Micro X-ray computed tomography image-based two-scale homogenisation of ultra high performance fibre reinforced concrete", Constr. Build. Mater., 130, 230-240. https://doi.org/10.1016/j.conbuildmat.2016.09.020.
  152. Raju, R.A., Lim, S., Kageyama, T. and Akiyama, M. (2019), "Visualization of the fibre dispersion in the steel fibre reinforced concrete using X-ray image", Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, Krakow, Poland, May.
  153. Rana, S., Subramani, P., Fangueiro, R. and Correia, A.G. (2016), "A review on smart self-sensing composite materials for civil engineering applications", AIMS Mater. Sci. 3(2), 357-379. https://doi.org/10.3934/matersci.2016.2.357.
  154. Reches, Y., Thomson, K., Helbing, M., Kosson, D.S. and Sanchez, F. (2018), "Agglomeration and reactivity of nanoparticles of SiO2, TiO2, Al2O3, Fe2O3 and clays in cement pastes and effects on compressive strength at ambient and elevated temperatures", Constr. Build. Mater., 167, 860-873. https://doi.org/10.1016/j.conbuildmat.2018.02.032.
  155. Reches, Y. (2018), "Nanoparticles as concrete additives: Review and perspectives", Constr. Build. Mater., 175, 483-495. https://doi.org/10.1016/j.conbuildmat.2018.04.214.
  156. Reggente, M., Passeri, D., Angeloni, L., Scaramuzzo, F.A., Barteri, M., De Angelis, F., Persiconi, I., de Stefanog, M.E. and Rossi, M. (2017), "Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging", Nanoscale, 9(17), 5671-5676. https://doi.org/10.1039/C7NR01111C.
  157. Ren, W., Yang, Z., Sharma, R., Zhang, C. and Withers, P.J. (2015), "Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete", Eng. Fract. Mech., 133, 24-39. https://doi.org/10.1016/j.engfracmech.2014.10.016.
  158. Saez de Ibarra, Y., Gaitero, J.J., Erkizia, E. and Campillo, I. (2006), "Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions", Phys. status solidi, 203(6), 1076-1081. https://doi.org/10.1002/pssa.200566166.
  159. Said, A.M., Zeidan, M.S., Bassuoni, M.T. and Tian, Y. (2012), "Properties of concrete incorporating nano-silica", Constr. Build. Mater., 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044.
  160. Salemi, N. and Behfarnia, K. (2013), "Effect of nano-particles on durability of fiber-reinforced concrete pavement", Constr. Build. Mater., 48, 934-941. https://doi.org/10.1016/j.conbuildmat.2013.07.037.
  161. Sanchez, F. and Ince, C. (2009), "Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites", Compos. Sci. Technol., 69(7-8), 1310-1318. https://doi.org/10.1016/j.compscitech.2009.03.006.
  162. Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete - A review", Constr. Build. Mater., 24(11), 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014.
  163. Senff, L., Labrincha, J.A., Ferreira, V.M., Hotza, D. and Repette, W.L. (2009), "Effect of nano-silica on rheology and fresh properties of cement pastes and mortars", Constr. Build. Mater., 23(7), 2487-2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005.
  164. Shaikh, F.U.A. and Supit, S.W.M. (2015), "Chloride induced corrosion durability of high volume fly ash concretes containing nano particles", Constr. Build. Mater., 99, 208-225. https://doi.org/10.1016/j.conbuildmat.2015.09.030.
  165. Sharma, U., Singh, L.P., Zhan, B. and Poon, C.S. (2019), "Effect of particle size of nanosilica on microstructure of C-S-H and its impact on mechanical strength", Cement Concrete Compos., 97, 312-321. https://doi.org/10.1016/j.cemconcomp.2019.01.007.
  166. Shekhawat, G.S. (2005), "Nanoscale imaging of buried structures via scanning near-field ultrasound holography", Science, 310(5745), 89-92. https://doi.org/10.1126/science.1117694.
  167. Shekhawat, G.S., Srivastava, A.K., Dravid, V.P. and Balogun, O. (2017), "Thickness resonance acoustic microscopy for nanomechanical subsurface imaging", ACS Nano, 11(6), 6139-6145. https://doi.org/10.1021/acsnano.7b02170.
  168. Siddique, R. and Mehta, A. (2014), "Effect of carbon nanotubes on properties of cement mortars", Constr. Build. Mater., 50, 116-129. https://doi.org/10.1016/j.conbuildmat.2013.09.019.
  169. Sikora, P., Abd Elrahman, M., Chung, S.Y., Cendrowski, K., Mijowska, E. and Stephan, D. (2019), "Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature", Cement Concrete Compos., 95, 193-204. https://doi.org/10.1016/j.cemconcomp.2018.11.006.
  170. Singh, L.P., Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials - A review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052.
  171. Sobolev, K., Flores, I., Hermosillo, R. and Torres-Martinez, L.M. (2008), "Nanomaterials and nanotechnology for high-performance cement composites", Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, Denver, U.S.A., November. https://doi.org/10.14359/20213.
  172. Sophocleous, M. (2017), "Electrical Resistivity Sensing Methods and Implications", Electr. Resist. Conduct., 10, 67748. https://doi.org/10.5772/67748.
  173. Stahli, P., Custer, R. and van Mier, J.G.M. (2008), "On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC", Mater. Struct., 41(1), 189-196. https://doi.org/10.1617/s11527-007-9229-x.
  174. Stan, G., Krylyuk, S., Davydov, A.V., Vaudin, M.D., Bendersky, L.A. and Cook, R.F. (2009), "Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging", Ultramicroscopy, 109(8), 929-936. https://doi.org/10.1016/j.ultramic.2009.03.025.
  175. Stan, G., King, S.W. and Cook, R.F. (2012), "Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy", Nanotechnology, 23(21), 215703. https://doi.org/10.1088/0957-4484/23/21/215703.
  176. Stan, G. and Solares, S.D. (2014), "Frequency, amplitude and phase measurements in contact resonance atomic force microscopies", Beilstein J. Nanotechnol., 5, 278-288. https://doi.org/10.3762/bjnano.5.30.
  177. Su, Y., Wu, C., Li, J., Li, Z.X. and Li, W. (2017), "Development of novel ultra-high performance concrete: From material to structure", Constr. Build. Mater., 135, 517-528. https://doi.org/10.1016/j.conbuildmat.2016.12.175.
  178. Sugimoto, Y., Pou, P., Abe, M., Jelinek, P., Perez, R., Morita, S. and Custance, O. (2007), "Chemical identification of individual surface atoms by atomic force microscopy", Nature, 446(7131), 64-67. https://doi.org/10.1038/nature05530.
  179. Takeichi, Y. (2018), Scanning Transmission X-ray Microscopy in Compendium of Surface and Interface Analysis, Springer, Singapore. https://doi.org/10.1007/978-981-10-6156-1_96.
  180. Tobon, J.I., Paya, J. and Restrepo, O.J. (2015), "Study of durability of Portland cement mortars blended with silica nanoparticles", Constr. Build. Mater., 80, 92-97. https://doi.org/10.1016/j.conbuildmat.2014.12.074.
  181. Tsuji, T. and Yamanaka, K. (2001), "Observation by ultrasonic atomic force microscopy of reversible displacement of subsurface dislocations in highly oriented pyrolytic graphite", Nanotechnology, 12(3), 301-307. https://doi.org/10.1088/0957-4484/12/3/318.
  182. Turner, J.A. (2005), "Ultrasonic studies of the fundamental mechanisms of recrystallization and sintering of metals", Report No. DE-FG02-01ER45890; University of Nebraska-Lincoln.
  183. Verbiest, G.J., Oosterkamp, T.H. and Rost, M.J. (2017), "Subsurface contrast due to friction in heterodyne force microscopy", Nanotechnology, 28(8), 085704. https://doi.org/10.1088/1361-6528/aa53f2.
  184. Villa, C., Frohlich, B. and Lynnerup, N. (2019), The Role of Imaging in Paleopathology, in Ortner's Identification of Pathological Conditions in Human Skeletal Remains, Academic Press, Cambridge, U.S.A. https://doi.org/10.1016/B978-0-12-809738-0.00007-7.
  185. Vitry, P. (2016), "Applications and development of acoustic and microwave atomic force microscopy for high resolution tomography analysis", Report No.tel-01635664; Universite de Bourgogne Franche-Comte.
  186. Wan, L., Pan, R. and Xu, J. (2019), "Mechanical properties and microstructure of CaSO4 Whisker reinforced cement mortar", J. Wuhan Univ. Technol. Sci. Ed., 34(5), 1170-1176. https://doi.org/10.1007/s11595-019-2174-z.
  187. Wang, L., Jakob, D.S., Wang, H., Apostolos, A., Pires, M.M. and Xu, X.G. (2019), "Generalized heterodyne configurations for photoinduced force microscopy", Anal. Chem., 91(20), 13251-13259. https://doi.org/10.1021/acs.analchem.9b03712.
  188. Wang, T., Ma, C., Hu, W., Chen, Y. and Chu, J. (2017), "Visualizing subsurface defects in graphite by acoustic atomic force microscopy", Microsc. Res. Tech., 80(1), 66-74. https://doi.org/10.1002/jemt.22668.
  189. Wang, W.C. (2017), "Compressive strength and thermal conductivity of concrete with nanoclay under various hightemperatures", Constr. Build. Mater., 147, 305-311. https://doi.org/10.1016/j.conbuildmat.2017.04.141.
  190. Wargo, E.A., Kotaka, T., Tabuchi, Y. and Kumbur, E.C. (2013), "Comparison of focused ion beam versus nano-scale X-ray computed tomography for resolving 3-D microstructures of porous fuel cell materials", J. Power Sources, 241, 608-618. https://doi.org/10.1016/j.jpowsour.2013.04.153.
  191. Wu, H., Pan, J. and Wang, J. (2020), "Nano-scale structure and mechanical properties of ASR products under saturated and dry conditions", Sci. Rep., 10(1), 9187. https://doi.org/10.1038/s41598-020-66262-9.
  192. Wu, Z., Khayat, K.H. and Shi, C. (2017), "Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete", Cement Concrete Res., 95, 247-256. https://doi.org/10.1016/j.cemconres.2017.02.031.
  193. Xavier, M.S., Yang, S., Comte, C., Bab-Hadiashar, A., Wilson, N. and Cole, I. (2020), "Nondestructive quantitative characterisation of material phases in metal additive manufacturing using multi-energy synchrotron X-rays microtomography", Int. J. Adv. Manuf. Technol., 106(5-6), 1601-1615. https://doi.org/10.1007/s00170-019-04597-y.
  194. Xiao, H., Zhang, F., Liu, R., Zhang, R., Liu, Z. and Liu, H. (2019), "Effects of pozzolanic and non-pozzolanic nanomaterials on cement-based materials", Constr. Build. Mater., 213, 1-9. https://doi.org/10.1016/j.conbuildmat.2019.04.057.
  195. Xu, P., Cai, W. and Wang, R. (2011), "Scanning near-field acoustic microscope and its application", Sci. China Technol. Sci., 54(1), 126-130. https://doi.org/10.1007/s11431-010-4147-5.
  196. Yamanaka, K., Noguchi, A., Tsuji, T., Koike, T. and Goto, T. (1999), "Quantitative material characterization by ultrasonic AFM", Surf. Interf. Anal., 27(5-6), 600-606. https://doi.org/10.1002/(SICI)1096-9918(199905/06)27:5/6<600::AID-SIA508>3.0.CO;2-W.
  197. Yamanaka, K. and Tsuji, T. (2013), "Ultrasonic atomic force microscopy UAFM", in Nanosci. Technol., 155-187. https://doi.org/10.1007/978-3-642-27494-7_6.
  198. Yang, L.Y., Jia, Z.J., Zhang, Y.M. and Dai, J.G. (2015), "Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes", Cement Concrete Compos., 57, 1-7. https://doi.org/10.1016/j.cemconcomp.2014.11.009.
  199. Yazdanbakhsh, A., Grasley, Z., Tyson, B. and Al-Rub, R.K.A. (2010), "Distribution of carbon nanofibers and nanotubes in cementitious composites", Transp. Res. Rec., 2142(1), 89-95. https://doi.org/10.3141/2142-13.
  200. Yazdanbakhsh, A., Grasley, Z., Tyson, B. and Abu Al-Rub, R. (2012), "Challenges and benefits of utilizing carbon nanofilaments in cementitious materials", J. Nanomater., 2012, 1-8. https://doi.org/10.1155/2012/371927.
  201. Yip, K., Cui, T., Sun, Y. and Filleter, T. (2019), "Investigating the detection limit of subsurface holes under graphite with atomic force acoustic microscopy", Nanoscale, 11(22), 10961-10967. https://doi.org/10.1039/C9NR03730F.
  202. Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014), "Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount", Constr. Build. Mater., 65, 140-150. https://doi.org/10.1016/j.conbuildmat.2014.04.063.
  203. Yu, X. and Kwon, E. (2009), "A carbon nanotube/cement composite with piezoresistive properties", Smart Mater. Struct., 18(5), 055010. https://doi.org/10.1088/0964-1726/18/5/055010.
  204. Zeng, X., Lan, X., Zhu, H., Liu, H., Umar, H.A., Xie, Y., Long, G. and Ma, C. (2020), "A review on bubble stability in fresh concrete: mechanisms and main factors", Materials, 13(8), 1820. https://doi.org/10.3390/ma13081820.
  205. Zhang, C., Yu, X., Alexander, L., Zhang, Y., Rajamani, R. and Garg, N. (2016), "Piezoelectric active sensing system for crack detection in concrete structure", J. Civ. Struct. Heal. Monit. 6(1), 129-139. https://doi.org/10.1007/s13349-015-0143-6.
  206. Zhang, L., Ding, S., Han, B., Yu, X. and Ni, Y.Q. (2019), "Effect of water content on the piezoresistive property of smart cement-based materials with carbon nanotube/nanocarbon black composite filler", Compos. Part A Appl. Sci. Manuf., 119, 8-20. https://doi.org/10.1016/j.compositesa.2019.01.010.
  207. Zhang, R., Cheng, X., Hou, P. and Ye, Z. (2015), "Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage", Constr. Build. Mater., 81, 35-41. https://doi.org/10.1016/j.conbuildmat.2015.02.003.
  208. Zhang, Z., Wang, H., Provis, J.L., Bullen, F., Reid, A. and Zhu, Y. (2012), "Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide", Thermochim. Acta, 539, 23-33. https://doi.org/10.1016/j.tca.2012.03.021.
  209. Zhang, Z., Provis, J.L., Wang, H., Bullen, F. and Reid, A. (2013), "Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin", Thermochim. Acta, 565, 163-171. https://doi.org/10.1016/j.tca.2013.01.040.
  210. Zhou, B. and Uchida, Y. (2017), "Relationship between fiber orientation/distribution and post-cracking behaviour in ultra-high-performance fiber-reinforced concrete (UHPFRC)", Cement Concrete Compos., 83, 66-75. https://doi.org/10.1016/j.cemconcomp.2017.07.007.
  211. Zinin, P.V., Kutuza, I.B. and Titov, S.A. (2018), "Near-field defects imaging in thin dlc coatings using high-frequency scanning acoustic microscopy", J. Surf. Investig. X-ray, Synchrotron Neutron Tech., 12(6), 1285-1293. https://doi.org/10.1134/S1027451018050737.