Acknowledgement
This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No AP08052562)
References
- Akasaka, T., Nagase, S. (2002), Endofullerenes (A New Family of Carbon Clusters), Springer, Netherlands.
- Artyukh, A.A. and Chernozatonskii L.A. (2020), "Simulation of the formation and mechanical properties of layered structures with polymerized fullerene-graphene components", JETP Lett., 111(2), 109-115. https://doi.org/10.31857/S0370274X20020083.
- Averin, D.V. and Likharev, K.K. (1986), "Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions", J. Low Temp. Phys., 62(3), 345-373. https://doi.org/10.1007/BF00683469.
- Bal, M., Long, J., Zhao, R., Wang, H., Park, S., McRae, C.R.H., Zhao, T., Lake, R., Monarkha, V., Simbierowicz, S., Frolov, D., Pilipenko, R., Zorzetti, S., Romanenko, A., Liu, C.H., McDermott, R. and Pappas, D. (2021), "Overlap junctions for superconducting quantum electronics and amplifiers", Appl. Phys. Lett., 118(11), 112601. https://doi.org/10.1063/5.0048621.
- Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J. and Stokbro, K. (2002), "Density-functional method for nonequilibrium electron transport", Phys. Rev. B, 65(16), 165401. https://doi.org/10.1103/PhysRevB.65.165401.
- Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J. and Stokbro, K. (2002), "Density-functional method for nonequilibrium electron transport", Phys. Rev. B, 65(16), 165401. https://doi.org/10.1103/PhysRevB.65.165401.
- Burroughs, C.J., Benz, S.P., Harvey, T.E. and Hamilton, C.A. (1999), "1 Volt DC Programmable Josephson Voltage Standard System", IEEE T Appl Superconduct., 9(2), 4145-4148. https://doi.org/10.1109/77.783938.
- Cardenas-Jiron, G.I., Borges-Martinez, M., Sikorski, E. and Baruah, T. (2017), "excited states of light-harvesting systems based on fullerene/graphene oxide and porphyrin/smaragdyrin", J. Phys. Chem. C, 121(9), 4859-4872. https://doi.org/10.1021/acs.jpcc.6b12452.
- Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009), "The electronic properties of graphene", Rev. Mod. Phys., 81(1), 109-162. https://doi.org/10.1103/RevModPhys.81.109.
- Cattaneo, M., Giorgi, G., Maniscalco, S., Paraoanu, G. and Zambrini, R. (2021), "Bath-induced collective phenomena on superconducting qubits: Synchronization, subradiance, and entanglement generation", Annalen der Physik, 533(5), 2100038. https://doi.org/10.1002/andp.202100038.
- Ceron, M.R., Zhan, C., Campbell, P.G., Freyman, M.C., Santoyo, C., Echegoyen, L. and Biener, M.M. (2019), "Integration of fullerenes as electron-acceptors in 3d graphene networks: Enhanced charge transfer and stability through molecular design", ACS Appl. Mater. Interf., 14(11), 28818-28822. https://doi.org/10.1021/acsami.9b06681.
- Champagne, A.R., Pasupathy, A.N. and Ralph, D.C. (2005), "Mechanically adjustable and electrically gated single-molecule transistors", Nano Letters, 5(2), 305-308. https://doi.org/10.1021/nl0480619.
- Chen, R., Lin, C., Yu, H., Tang, Y., Song, C., Yuwen, L. and Huang, W. (2016), "Templating C60 on MoS2 nanosheets for 2d hybrid van der waals p-n nanoheterojunctions", Chem. Mater., 28(12), 4300-4306. https://doi.org/10.1021/acs.chemmater.6b01115.
- Chuan, M.W., Lau, J.Y., Wong, K.L., Hamzah, A., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021), "Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications", Adv. Nano Res., 10(5), 415-422. htts://doi.org/10.12989/anr.2021.10.5.415.
- Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021), "Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor", Adv. Nano Res., 10(1), 91-99. https://doi.org/10.12989/anr.2021.10.1.091.
- Cuevas, J.C. and Scheer, E. (2017), Molecular Electronics (An Introduction to Theory and Experiment), World Scientific Publishing Co. Pte. Ltd., New Jersey, U.S.A.
- Dalessandro R.B., Bocchi, M., Rossi, V. and Martini L.F. (2007), "Test results on 500 kva-classmgb2-based fault current limiter prototypes", IEEE T Appl. Superconduct., 17(2), 1776-1779. https://doi.org/10.1109/TASC.2007.899034.
- Daqiq, R. (2021), "Spin-filter devices based on resonant magnetic tunnel junctions", J. Electron. Mater., 50(7), 3930-3936. https://doi.org/10.1007/s11664-021-08892-x.
- Davis, N., Rudge, S.L. and Kosov, D.S. (2021), "Electronic statistics on demand: Bunching, antibunching, positive, and negative correlations in a molecular spin valve", Phys. Rev. B, 103(20), 205408. https://doi.org/10.1103/PhysRevB.103.205408.
- Devi J.M. (2019), "Simulation of graphene-fullerene nanohybrid structure", Bull. Mater. Sci., 42(2), 75. https://doi.org/10.1007/s12034-019-1753-0.
- Dragoman, M., Dinescu, A. and Dragoman, D. (2019), "2D materials nanoelectronics: Mew concepts, fabrication, characterization from microwaves up to optical spectrum", Phys. Status Solidi A, 216(8) 1800724. https://doi.org/10.1002/pssa.201800724.
- Dragoman, M. and Dragoman, D. (2017), 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, Springer International Publishing, Cham, Switzerland.
- Eletskii, A.V. (1997), "Carbon nanotubes", Phys. Usp., 40, 899-924. https://doi.org/10.3367/UFNr.0167.199709b.0945.
- Faley, M. I., Poppe, U., Borkowski, R. D., Schiek, M., Boers, F., Chocholacs, H., Dammers, J., Eich, E., Shah, N.J., Ermakov, A.B., Slobodchikov, V.Yu., Maslennikov, Yu, V. and Koshelets, V.P. (2012), "Magnetoencephalography using a Multilayer hight C DC SQUID Magnetometer", Phys. Proced., 36, 66-71. https://doi.org/10.1016/j.phpro.2012.06.131.
- Ferre, N., Filatov, M. and Huix-Rotllant M. (2016), Density-Functional Methods for Excited States, Springer International Publishing, Cham, Switzerland.
- Fried, J.P., Bian, X., Swett, J.L., Kravchenko, I.I., Briggs, G.A.D. and Mol, J.A. (2020), "Large amplitude charge noise and random telegraph fluctuations in room-temperature graphene single-electron transistors", Nanoscale, 12(2), 871-876. https://doi.org/10.1039/c9nr08574b.
- Ganjia, M.D. and Nourozi, F. (2008), "Density functional non-equilibrium Green's function (DFT-NEGF) study of the smallest nano-molecular switch", Physica E, 40(7,) 2606-2613. https://doi.org/10.1016/j.physe.2007.09.123.
- Gaurav, K., SanthiBhushan, B., Ray, S. and Srivastava, A. (2019), "Acridinium based organic molecular single-electron transistor for high performance switching applications", IEEE T Nanotechnol., 18, 1148-1155. https://doi.org/10.1109/TNANO.2019.2945995.
- Gehring, P., Harzheim, A., Spiece, J., Sheng, Y., Rogers, G., Evangeli, C. and Mol, J.A. (2017), "Field-effect control of graphene-fullerene thermoelectric nanodevices", Nano Lett., 17(11), 7055-7061. https://doi.org/10.1021/acs.nanolett.7b03736.
- Geim, A.K. (2009), "Graphene: Status and prospects", Science, 324(5934), 1530-1534. https://doi.org/10.1126/science.1158877.
- Geim, A.K. and Grigorieva, I.V. (2013), "Van der Waals heterostructures", Nature, 499(25), 419-425. https://doi.org/10.1038/nature12385.
- Gyanchandani, N., Pawar, S., Maheshwary, P. and Nemade, K. (2021), "Comprehensive study of spin field effect transistors with co-graphene ferromagnetic contacts", J. Magnetism and Magnetic Mater., 517, 167410. https://doi.org/ 10.1016/j.jmmm.2020.167410.
- Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.L., Dieny, B., Pirro, P. and Hillebrands, B. (2020), "Review on spintronics: Principles and device applications", J. Magnetism Magnetic Mater., 509, 166711. https://doi.org/10.1016/j.jmmm.2020.166711.
- Huang, W.Q., Liu, S.R., Peng, H.Y., Li, X. and & Huang, Z.M. (2020), "Synthesis of new silicene structure and its energy band properties", Chinese Phys. B, 29(8), 084202. https://doi.org/10.1088/1674-1056/ab942c.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
- Kalashnikov, K., Artanov, A.A., de Lange, G. and Koshelets, V.P. (2018), "Investigation of the harmonic mixer and low-frequency converter regimes in a superconducting tunnel junction", IEEE T Appl. Superconduct., 28(4), 2400105. https://doi.org/10.1109/TASC.2018.2803043.
- Kang, A.K., Zandi, M.H. and Gorji, N.E. (2019), "Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D", Optical Quant. Electron., 51(4), 91. https://doi.org/10.1007/s11082-019-1802-3.
- Khadem Hosseini, V., Ahmadi, M.T. and Ismail, R. (2018), "Analysis and modeling of fullerene single-electron transistor based on quantum dot arrays at room temperature", J. Electron. Mater., 47(8), 4799-4806. https://doi.org/10.1007/s11664-018-6366-7.
- Khademhosseini, V., Dideban, D. and Ahmadi, M. (2021), "The current analysis of a single-electron transistor based on double grapheme nanoscroll island", Solid State Commun., 327(7), 114234. https://doi.org/10.1016/j.ssc.2021.114234.
- Kharlamova, M.V. (2013), "Electronic properties of pristine and modified single-walled carbon nanotubes", Phys. Usp., 56(11), 1047-1073. https://doi.org/10.3367/UFNe.0183.201311a.1145.
- Kiraly, B., Liu, X., Wang, L., Zhang, Zh., Mannix, A.J., Fisher, B.L., Yakobson, B.I. and Hersam, M.C., Guisinger, N.P. (2019), "Borophene synthesis on Au(111)", ACS Nano, 13(4), 3816-3822. https://doi.org/10.1021/acsnano.8b09339.
- Koh, W., Moon, H.S., Lee, S.G., Choi, J.I. and Jang, S.S. (2014), "A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system", ChemPhysChem, 16(4), 789-795. https://doi.org/10.1002/cphc.201402675.
- Kornev, V.K., Kolotinskiy, N.V., Sharafiev, A.V., Soloviev, I.I. and Mukhanov, O.A. "Broadband active electrically small superconductor antennas", Supercond. Sci. Technol., 30(10), 103001. https://doi.org/10.1088/1361-6668/aa7a52/
- Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F. and Smalley, R.E. (1985), "C60: Buckminsterfullerene", Nature, 318(6042), 162-163. https://doi.org/10.1038/318162a0.
- Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.
- Landauer, R. (1970), "Electrical resistance of disordered one-dimensional lattices", Philos. Mag., 21(172), 863-867. https://doi.org/10.1080/14786437008238472.
- Lee, K., Chakram, S., Kim, S., Mujid, F., Ray, A., Gao, H., Park, C., Zhong, Y., Muller, D., Schuster, D. and Park, J. (2019), "Two-dimensional material tunnel barrier for josephson junctions and superconducting qubits", Nano Lett., 19(11), 8287-8293. https://doi.org/10.1021/acs.nanolett.9b03886.
- Likharev, K.K. (2012), "Superconductor digital electronics", Physica C., 482, 6-18. https://doi.org/10.1016/j.physc.2012.05.016.
- Likharev, K.K. (1999), "Single-electron devices and their applications", Proceedings of the IEEE, 87(4), 606-632. https://doi.org/10.1109/5.752518.
- Macha P., Oelsner G., Reiner J.M., Marthaler M., Andre S., Schon G., Hubner U., Meyer H.G., Il'ichev E., Ustinov A.V. (2014), "Implementation of a quantum metamaterial using superconducting qubits", Nature Commun., 5(1), 5146. https://doi.org/ 10.1038/ncomms6146.
- Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on I-V characteristics of CNTFETs", Adv. Nano Res., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061.
- Martini, L., Arcos, I., Bocchi, M., Brambilla, R., Dalessandro, R., Frigerio, A. and Rossi, V. (2006), "Resistive fault current limiter prototypes: mechanical and electrical analyses", J. Phys. Conf. Ser., 43(226), 925-928. https://doi.org/10.1088/1742-6596/43/1/226.
- Miao, W., Gao, H., Zhou, K., Zhong, J., Ren, Y., Zhang, W., Shi, S., Delorme, Y. (2021), "Linear and nonlinear flux-flow behaviors in superconducting hot-electron bolometer mixers", Appl. Phys. Lett., 118(11), 112602. https://doi.org/10.1063/5.0045624.
- Montanaro, A., Wei, W., De Fazio, D., Sassi, U., Soavi, G., Aversa, P., Ferrari, A.C., Happy, H., Legagneux, P. and Pallecchi, E. (2021), "Optoelectronic mixing with high-frequency graphene transistors", Nature Commun., 12(1), 2728. https://doi.org/10.1038/s41467-021-22943-1.
- Morozov, S.V, Novoselov, K.S. and Geim, A.K. (2008), "Electronic transport in graphene", Phys. Usp., 51(7), 744-748. https://doi.org/10.1070/PU2008v051n07ABEH006575.
- Mouafo, L.D.N., Godel, F., Simon, L., Dappe, Y., Baaziz, W., Noumbe, U., Lorchat, E., Martin, M., Berciaud, S., Doudin, B., Ersen, O., Dlubak, B., Seneor, P. and Dayen, J.F. (2020), "0D/2D heterostructures vertical single electron transistor", Adv. Funct. Mater., 31(9), 2008255. https://doi.org/10.1002/adfm.202008255.
- Murali, R. (2012), Graphene Nanoelectronics: From Materials to Circuits, Springer, New York, USA.
- Nakajima, A., Shoji, A., Nagano, K. and Kajihara, J. (2015), "Dependence of memory characteristics of fullerene-containing polymer on the kind of gate metal", Japanese J. Appl. Phys., 54(10), 100303. https://doi.org/10.7567/jjap.54.100303.
- Nasri, A., Boubaker, A., Hafsi, B., Khaldi, W. and Kalboussi, A. (2018), "High-sensitivity sensor using C60-single molecule transistor", IEEE Sens. J., 18(1), 248-254. https://doi.org/10.1109/jsen.2017.2769803.
- Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov A.A. (2004), "Electric field effect in atomically thin carbon films", Science., 306(5696), 666-669. https://doi.org/10.1126/science.1102896.
- Park, H., Park, J., Lim, A.K.L., Anderson, E.H., Alivisatos, A.P. and McEuen, P.L. (2000), "Nanomechanical oscillations in a single-C60 transistor", Nature, 407(6800), 57-60. https://doi.org/10.1038/35024031.
- Pasupathy, A.N., Park, J., Chang, C., Soldatov, A.V., Lebedkin, S., Bialczak, R.C., Grose, J.E., Donev, L.A.K., Sethna, J.P., Ralph, D.C. and McEuen, P.L. (2005), "Vibration-assisted electron tunneling in c140 transistors", Nano Lett., 5(2), 203-207. https://doi.org/10.1021/nl048619c.
- Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.
- Pica, M. and D'Amato, R. (2020), "Chemistry of phosphorene: synthesis, functionalization and biomedical applications in an update review", Inorganics, 8(4), 29. https://doi.org/10.3390/inorganics8040029.
- Sahoo, S.K. and Wei, K.H. (2019), "A perspective on recent advances in 2D stanene nanosheets", Adv. Mater. Interf., 6(18), 1900752. https://doi.org/10.1002/admi.201900752.
- Sergeyev, D.M. (2012), "About tunneling of pairs of the cooper pairs through the Josephson junctions in exotic superconductors", Russ. Phys. J., 55(1), 84-91. https://doi.org/10.1007/s11182-012-9779-4.
- Sergeyev, D.M. (2013), "Plasma frequency in Josephson junctions with a non-sinusoidal current-phase relation", Solid State Phenom., 200, 272-275. https://doi.org/10.4028/www.scientific.net/SSP.200.272.
- Sergeyev, D.M. (2018), "Computer simulation of electrical characteristics of a graphene cluster with Stone-Wales defects", J. Nano Electron. Phys., 10(3), 03018. https://doi.org/10.21272/jnep.10(3).03018.
- Sergeyev, D.M. (2020a), "Features of the electrical characteristics of an octagraphene nanotube", J. Nano Electron. Phys., 11(6), 06022. https://doi.org/10.21272/jnep.11(6).06022.
- Sergeyev, D.M. (2020b), "Single electron transistor based on endohedral metallofullerenes Me@C60 (Me = Li, Na, K)", J. Nano Electron. Phys., 12(3), 03017. https://doi.org/10.21272/jnep.12(3).03017.
- Sergeyev, D.M. (2020c), "Specific features of electron transport in a molecular nanodevice containing a nitroamine redox center", Tech. Phys., 65(4), 573-577. https://doi.org/10.1134/S1063784220040180.
- Sergeyev, D.M. (2021), "One-dimensional Schottky nanodiode based on telescoping polyprismanes", Adv. Nano Res., 10(4), 339-347. htts://doi.org/10.12989/anr.2021.10.4.339.
- Sergeyev, D.M. and Shunkeyev, K. (2018), "Investigation of transport parameters of graphene-based nanostructures", Russ. Phys. J., 60(11), 1938-1945. https://doi.org/10.1007/s11182-018-1306-9.
- Sergeyev, D.M. and Duisenova, A.G. (2021), "Electron transport in model quasi-two-dimensional van der waals nanodevices", Tech. Phys. Lett., 47(4), 375-378. https://doi.org/10.1134/S1063785021040295.
- Sergeyev, D.M., Ashikov, N. and Zhanturina, N. (2021), "Electric transport properties of a model nanojunction Graphene-Fullerene C60-Graphene", Int. J. Nanosci., 20(1), 2150007. https://doi.org/10.1142/S0219581X21500071.
- Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A., Vej-Hansen, U.G., Lee. M.E., Chill, S.T., Rasmussen, F., Penazzi, G., Corsetti, F., Ojanpera, A., Jensen, K., Palsgaard, M.L.N., Martinez, U., Blom, A., Brandbyge, M. and Stokbro, K. (2020), "QuantumATK: An integrated platform of electronic and atomic-scale modelling tools", J. Phys. Condens. Matter., 32, 015901. https://doi.org/10.1088/1361-648X/ab4007.
- Srivastava, A., Khan, M.S. (2018), "First principle study of single-electron transistor based on metal-organic complex of dibenzothiophene", Organic Electron., 53, 227-234. https://doi.org/10.1016/j.orgel.2017.11.042.
- Stokbro, K. (2008), "First-principles modeling of electron transport", J. Phys. Condens. Matter., 20(6), 064216. https://doi.org/10.1088/0953-8984/20/6/064216.
- Tolpygo, S.K. (2016), "Superconductor digital electronics: Scalability and energy efficiency issues", Low Temp. Phys., 42(5), 361-379. https://doi.org/10.1063/1.4948618.
- Wang, P., Chen, B.B. and Wang, X. (2021), "Organic spin valves with nonvolatile memory using molecular doping", Synthetic Met., 273, 116676. https://doi.org/10.1016/j.synthmet.2020.116676.
- Wang, Y., Zhang, S., Zhang, G., Xu, X., Zhang, C., Wang, Y. and Xie, X. (2020), "Low-drift and compact readout electronics for practical SQUID magnetocardiography working in unshielded environment", Physica C, 575(7), 1353685. https://doi.org/10.1016/j.physc.2020.1353685.
- Ward, D.R., Scott, G.D., Keane, Z.K., Halas, N.J. and Natelson, D. (2008), "Electronic and optical properties of electromigrated molecular junctions", J. Phys. Condens. Matter, 20(37), 374118. https://doi.org/10.1088/0953-8984/20/37/374118.
- Xiang, R., Inoue, T., Zheng, Y., Kumamoto, A., Qian, Y., Sato, Y., Liu, M., Tang, D., Gokhale, D., Guo, J., Hisama, K., Yotsumoto, S., Ogamoto, T., Arai, H., Kobayashi., Y., Zhang, H., Hou, B., Anisimov, A., Maruyama, M., Miyata, Y., Okada, S., Chiashi, S., Li, Y., Kong, J., Kauppinen, E.I., Ikuhara, Y., Suenaga. K. and Maruyama, S. (2020), "One-dimensional van der Waals heterostructures", Science, 367(6477), 537-542. htts://doi.org/10.1126/science.aaz2570.
- Yang, W., Cao, Y., Han, J., Lin, X., Wang, X., Wei, G., Chen, Lv., Bournel, A. and Zhao, W. (2021), "Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions", Nanoscale, 13(2), 862-868. https://doi.org/10.1039/d0nr07290g.
- Zhu, J., Chen, X., Shang, W., Ning, J., Wang, D., Zhang, J. and Hao, Y. (2021), "Van der Waals contact between 2D magnetic VSe2 and transition metals and demonstration of high-performance spin-field-effect transistors", Sci. China Mater., 64(11), 2786-2794. https://doi.org/10.1007/s40843-021-1657-9.