DOI QR코드

DOI QR Code

Electron transport in core-shell type fullerene nanojunction

  • Sergeyev, Daulet (Department of Physics, K. Zhubanov Aktobe Regional State University) ;
  • Duisenova, Ainur (Department of Physics, K. Zhubanov Aktobe Regional State University)
  • Received : 2021.08.03
  • Accepted : 2021.09.02
  • Published : 2022.01.25

Abstract

Within the framework of the density functional theory combined with the method of non-equilibrium Green's functions (DFT + NEGF), the features of electron transport in fullerene nanojunctions, which are «core-shell» nanoobjects made of a combination of fullerenes of different diameters C20, C80, C180, placed between gold electrodes (in a nanogap), are studied. Their transmission spectra, the density of state, current-voltage characteristics and differential conductivity are determined. It was shown that in the energy range of -0.45-0.45 eV in the transmission spectrum of the "Au-C180-Au" nanojunction appears a HOMO-LUMO gap with a width of 0.9 eV; when small-sized fullerenes C20, C80 are intercalation into the cavity C180 the gap disappears, and a series of resonant structures are observed on their spectra. It has been established that distinct Coulomb steps appear on the current-voltage characteristics of the "Au-C180-Au" nanojunction, but on the current-voltage characteristics "Au-C80@C180-Au", "Au-(C20@C80)@C180-Au" these step structures are blurred due to a decrease in Coulomb energy. An increase in the number of Coulomb features on the dI/dV spectra of core-shell fullerene nanojunctions was revealed in comparison with nanojunctions based on fullerene C60, which makes it possible to create high-speed single-electron devices on their basis. Models of single-electron transistors (SET) based on fullerene nanojunctions "Au-C180-Au", "Au-C80@C180-Au" and "Au-(C20@C80)@C180-Au" are considered. Their charge stability diagrams are analyzed and it is shown that SET based on C80@C180-, (C20@C80)@C180- nanojunctions is output from the Coulomb blockade mode with the lowest drain-to-source voltage.

Keywords

Acknowledgement

This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No AP08052562)

References

  1. Akasaka, T., Nagase, S. (2002), Endofullerenes (A New Family of Carbon Clusters), Springer, Netherlands.
  2. Artyukh, A.A. and Chernozatonskii L.A. (2020), "Simulation of the formation and mechanical properties of layered structures with polymerized fullerene-graphene components", JETP Lett., 111(2), 109-115. https://doi.org/10.31857/S0370274X20020083.
  3. Averin, D.V. and Likharev, K.K. (1986), "Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions", J. Low Temp. Phys., 62(3), 345-373. https://doi.org/10.1007/BF00683469.
  4. Bal, M., Long, J., Zhao, R., Wang, H., Park, S., McRae, C.R.H., Zhao, T., Lake, R., Monarkha, V., Simbierowicz, S., Frolov, D., Pilipenko, R., Zorzetti, S., Romanenko, A., Liu, C.H., McDermott, R. and Pappas, D. (2021), "Overlap junctions for superconducting quantum electronics and amplifiers", Appl. Phys. Lett., 118(11), 112601. https://doi.org/10.1063/5.0048621.
  5. Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J. and Stokbro, K. (2002), "Density-functional method for nonequilibrium electron transport", Phys. Rev. B, 65(16), 165401. https://doi.org/10.1103/PhysRevB.65.165401.
  6. Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J. and Stokbro, K. (2002), "Density-functional method for nonequilibrium electron transport", Phys. Rev. B, 65(16), 165401. https://doi.org/10.1103/PhysRevB.65.165401.
  7. Burroughs, C.J., Benz, S.P., Harvey, T.E. and Hamilton, C.A. (1999), "1 Volt DC Programmable Josephson Voltage Standard System", IEEE T Appl Superconduct., 9(2), 4145-4148. https://doi.org/10.1109/77.783938.
  8. Cardenas-Jiron, G.I., Borges-Martinez, M., Sikorski, E. and Baruah, T. (2017), "excited states of light-harvesting systems based on fullerene/graphene oxide and porphyrin/smaragdyrin", J. Phys. Chem. C, 121(9), 4859-4872. https://doi.org/10.1021/acs.jpcc.6b12452.
  9. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009), "The electronic properties of graphene", Rev. Mod. Phys., 81(1), 109-162. https://doi.org/10.1103/RevModPhys.81.109.
  10. Cattaneo, M., Giorgi, G., Maniscalco, S., Paraoanu, G. and Zambrini, R. (2021), "Bath-induced collective phenomena on superconducting qubits: Synchronization, subradiance, and entanglement generation", Annalen der Physik, 533(5), 2100038. https://doi.org/10.1002/andp.202100038.
  11. Ceron, M.R., Zhan, C., Campbell, P.G., Freyman, M.C., Santoyo, C., Echegoyen, L. and Biener, M.M. (2019), "Integration of fullerenes as electron-acceptors in 3d graphene networks: Enhanced charge transfer and stability through molecular design", ACS Appl. Mater. Interf., 14(11), 28818-28822. https://doi.org/10.1021/acsami.9b06681.
  12. Champagne, A.R., Pasupathy, A.N. and Ralph, D.C. (2005), "Mechanically adjustable and electrically gated single-molecule transistors", Nano Letters, 5(2), 305-308. https://doi.org/10.1021/nl0480619.
  13. Chen, R., Lin, C., Yu, H., Tang, Y., Song, C., Yuwen, L. and Huang, W. (2016), "Templating C60 on MoS2 nanosheets for 2d hybrid van der waals p-n nanoheterojunctions", Chem. Mater., 28(12), 4300-4306. https://doi.org/10.1021/acs.chemmater.6b01115.
  14. Chuan, M.W., Lau, J.Y., Wong, K.L., Hamzah, A., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021), "Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications", Adv. Nano Res., 10(5), 415-422. htts://doi.org/10.12989/anr.2021.10.5.415.
  15. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021), "Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor", Adv. Nano Res., 10(1), 91-99. https://doi.org/10.12989/anr.2021.10.1.091.
  16. Cuevas, J.C. and Scheer, E. (2017), Molecular Electronics (An Introduction to Theory and Experiment), World Scientific Publishing Co. Pte. Ltd., New Jersey, U.S.A.
  17. Dalessandro R.B., Bocchi, M., Rossi, V. and Martini L.F. (2007), "Test results on 500 kva-classmgb2-based fault current limiter prototypes", IEEE T Appl. Superconduct., 17(2), 1776-1779. https://doi.org/10.1109/TASC.2007.899034.
  18. Daqiq, R. (2021), "Spin-filter devices based on resonant magnetic tunnel junctions", J. Electron. Mater., 50(7), 3930-3936. https://doi.org/10.1007/s11664-021-08892-x.
  19. Davis, N., Rudge, S.L. and Kosov, D.S. (2021), "Electronic statistics on demand: Bunching, antibunching, positive, and negative correlations in a molecular spin valve", Phys. Rev. B, 103(20), 205408. https://doi.org/10.1103/PhysRevB.103.205408.
  20. Devi J.M. (2019), "Simulation of graphene-fullerene nanohybrid structure", Bull. Mater. Sci., 42(2), 75. https://doi.org/10.1007/s12034-019-1753-0.
  21. Dragoman, M., Dinescu, A. and Dragoman, D. (2019), "2D materials nanoelectronics: Mew concepts, fabrication, characterization from microwaves up to optical spectrum", Phys. Status Solidi A, 216(8) 1800724. https://doi.org/10.1002/pssa.201800724.
  22. Dragoman, M. and Dragoman, D. (2017), 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, Springer International Publishing, Cham, Switzerland.
  23. Eletskii, A.V. (1997), "Carbon nanotubes", Phys. Usp., 40, 899-924. https://doi.org/10.3367/UFNr.0167.199709b.0945.
  24. Faley, M. I., Poppe, U., Borkowski, R. D., Schiek, M., Boers, F., Chocholacs, H., Dammers, J., Eich, E., Shah, N.J., Ermakov, A.B., Slobodchikov, V.Yu., Maslennikov, Yu, V. and Koshelets, V.P. (2012), "Magnetoencephalography using a Multilayer hight C DC SQUID Magnetometer", Phys. Proced., 36, 66-71. https://doi.org/10.1016/j.phpro.2012.06.131.
  25. Ferre, N., Filatov, M. and Huix-Rotllant M. (2016), Density-Functional Methods for Excited States, Springer International Publishing, Cham, Switzerland.
  26. Fried, J.P., Bian, X., Swett, J.L., Kravchenko, I.I., Briggs, G.A.D. and Mol, J.A. (2020), "Large amplitude charge noise and random telegraph fluctuations in room-temperature graphene single-electron transistors", Nanoscale, 12(2), 871-876. https://doi.org/10.1039/c9nr08574b.
  27. Ganjia, M.D. and Nourozi, F. (2008), "Density functional non-equilibrium Green's function (DFT-NEGF) study of the smallest nano-molecular switch", Physica E, 40(7,) 2606-2613. https://doi.org/10.1016/j.physe.2007.09.123.
  28. Gaurav, K., SanthiBhushan, B., Ray, S. and Srivastava, A. (2019), "Acridinium based organic molecular single-electron transistor for high performance switching applications", IEEE T Nanotechnol., 18, 1148-1155. https://doi.org/10.1109/TNANO.2019.2945995.
  29. Gehring, P., Harzheim, A., Spiece, J., Sheng, Y., Rogers, G., Evangeli, C. and Mol, J.A. (2017), "Field-effect control of graphene-fullerene thermoelectric nanodevices", Nano Lett., 17(11), 7055-7061. https://doi.org/10.1021/acs.nanolett.7b03736.
  30. Geim, A.K. (2009), "Graphene: Status and prospects", Science, 324(5934), 1530-1534. https://doi.org/10.1126/science.1158877.
  31. Geim, A.K. and Grigorieva, I.V. (2013), "Van der Waals heterostructures", Nature, 499(25), 419-425. https://doi.org/10.1038/nature12385.
  32. Gyanchandani, N., Pawar, S., Maheshwary, P. and Nemade, K. (2021), "Comprehensive study of spin field effect transistors with co-graphene ferromagnetic contacts", J. Magnetism and Magnetic Mater., 517, 167410. https://doi.org/ 10.1016/j.jmmm.2020.167410.
  33. Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.L., Dieny, B., Pirro, P. and Hillebrands, B. (2020), "Review on spintronics: Principles and device applications", J. Magnetism Magnetic Mater., 509, 166711. https://doi.org/10.1016/j.jmmm.2020.166711.
  34. Huang, W.Q., Liu, S.R., Peng, H.Y., Li, X. and & Huang, Z.M. (2020), "Synthesis of new silicene structure and its energy band properties", Chinese Phys. B, 29(8), 084202. https://doi.org/10.1088/1674-1056/ab942c.
  35. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  36. Kalashnikov, K., Artanov, A.A., de Lange, G. and Koshelets, V.P. (2018), "Investigation of the harmonic mixer and low-frequency converter regimes in a superconducting tunnel junction", IEEE T Appl. Superconduct., 28(4), 2400105. https://doi.org/10.1109/TASC.2018.2803043.
  37. Kang, A.K., Zandi, M.H. and Gorji, N.E. (2019), "Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D", Optical Quant. Electron., 51(4), 91. https://doi.org/10.1007/s11082-019-1802-3.
  38. Khadem Hosseini, V., Ahmadi, M.T. and Ismail, R. (2018), "Analysis and modeling of fullerene single-electron transistor based on quantum dot arrays at room temperature", J. Electron. Mater., 47(8), 4799-4806. https://doi.org/10.1007/s11664-018-6366-7.
  39. Khademhosseini, V., Dideban, D. and Ahmadi, M. (2021), "The current analysis of a single-electron transistor based on double grapheme nanoscroll island", Solid State Commun., 327(7), 114234. https://doi.org/10.1016/j.ssc.2021.114234.
  40. Kharlamova, M.V. (2013), "Electronic properties of pristine and modified single-walled carbon nanotubes", Phys. Usp., 56(11), 1047-1073. https://doi.org/10.3367/UFNe.0183.201311a.1145.
  41. Kiraly, B., Liu, X., Wang, L., Zhang, Zh., Mannix, A.J., Fisher, B.L., Yakobson, B.I. and Hersam, M.C., Guisinger, N.P. (2019), "Borophene synthesis on Au(111)", ACS Nano, 13(4), 3816-3822. https://doi.org/10.1021/acsnano.8b09339.
  42. Koh, W., Moon, H.S., Lee, S.G., Choi, J.I. and Jang, S.S. (2014), "A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system", ChemPhysChem, 16(4), 789-795. https://doi.org/10.1002/cphc.201402675.
  43. Kornev, V.K., Kolotinskiy, N.V., Sharafiev, A.V., Soloviev, I.I. and Mukhanov, O.A. "Broadband active electrically small superconductor antennas", Supercond. Sci. Technol., 30(10), 103001. https://doi.org/10.1088/1361-6668/aa7a52/
  44. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F. and Smalley, R.E. (1985), "C60: Buckminsterfullerene", Nature, 318(6042), 162-163. https://doi.org/10.1038/318162a0.
  45. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.
  46. Landauer, R. (1970), "Electrical resistance of disordered one-dimensional lattices", Philos. Mag., 21(172), 863-867. https://doi.org/10.1080/14786437008238472.
  47. Lee, K., Chakram, S., Kim, S., Mujid, F., Ray, A., Gao, H., Park, C., Zhong, Y., Muller, D., Schuster, D. and Park, J. (2019), "Two-dimensional material tunnel barrier for josephson junctions and superconducting qubits", Nano Lett., 19(11), 8287-8293. https://doi.org/10.1021/acs.nanolett.9b03886.
  48. Likharev, K.K. (2012), "Superconductor digital electronics", Physica C., 482, 6-18. https://doi.org/10.1016/j.physc.2012.05.016.
  49. Likharev, K.K. (1999), "Single-electron devices and their applications", Proceedings of the IEEE, 87(4), 606-632. https://doi.org/10.1109/5.752518.
  50. Macha P., Oelsner G., Reiner J.M., Marthaler M., Andre S., Schon G., Hubner U., Meyer H.G., Il'ichev E., Ustinov A.V. (2014), "Implementation of a quantum metamaterial using superconducting qubits", Nature Commun., 5(1), 5146. https://doi.org/ 10.1038/ncomms6146.
  51. Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on I-V characteristics of CNTFETs", Adv. Nano Res., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061.
  52. Martini, L., Arcos, I., Bocchi, M., Brambilla, R., Dalessandro, R., Frigerio, A. and Rossi, V. (2006), "Resistive fault current limiter prototypes: mechanical and electrical analyses", J. Phys. Conf. Ser., 43(226), 925-928. https://doi.org/10.1088/1742-6596/43/1/226.
  53. Miao, W., Gao, H., Zhou, K., Zhong, J., Ren, Y., Zhang, W., Shi, S., Delorme, Y. (2021), "Linear and nonlinear flux-flow behaviors in superconducting hot-electron bolometer mixers", Appl. Phys. Lett., 118(11), 112602. https://doi.org/10.1063/5.0045624.
  54. Montanaro, A., Wei, W., De Fazio, D., Sassi, U., Soavi, G., Aversa, P., Ferrari, A.C., Happy, H., Legagneux, P. and Pallecchi, E. (2021), "Optoelectronic mixing with high-frequency graphene transistors", Nature Commun., 12(1), 2728. https://doi.org/10.1038/s41467-021-22943-1.
  55. Morozov, S.V, Novoselov, K.S. and Geim, A.K. (2008), "Electronic transport in graphene", Phys. Usp., 51(7), 744-748. https://doi.org/10.1070/PU2008v051n07ABEH006575.
  56. Mouafo, L.D.N., Godel, F., Simon, L., Dappe, Y., Baaziz, W., Noumbe, U., Lorchat, E., Martin, M., Berciaud, S., Doudin, B., Ersen, O., Dlubak, B., Seneor, P. and Dayen, J.F. (2020), "0D/2D heterostructures vertical single electron transistor", Adv. Funct. Mater., 31(9), 2008255. https://doi.org/10.1002/adfm.202008255.
  57. Murali, R. (2012), Graphene Nanoelectronics: From Materials to Circuits, Springer, New York, USA.
  58. Nakajima, A., Shoji, A., Nagano, K. and Kajihara, J. (2015), "Dependence of memory characteristics of fullerene-containing polymer on the kind of gate metal", Japanese J. Appl. Phys., 54(10), 100303. https://doi.org/10.7567/jjap.54.100303.
  59. Nasri, A., Boubaker, A., Hafsi, B., Khaldi, W. and Kalboussi, A. (2018), "High-sensitivity sensor using C60-single molecule transistor", IEEE Sens. J., 18(1), 248-254. https://doi.org/10.1109/jsen.2017.2769803.
  60. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov A.A. (2004), "Electric field effect in atomically thin carbon films", Science., 306(5696), 666-669. https://doi.org/10.1126/science.1102896.
  61. Park, H., Park, J., Lim, A.K.L., Anderson, E.H., Alivisatos, A.P. and McEuen, P.L. (2000), "Nanomechanical oscillations in a single-C60 transistor", Nature, 407(6800), 57-60. https://doi.org/10.1038/35024031.
  62. Pasupathy, A.N., Park, J., Chang, C., Soldatov, A.V., Lebedkin, S., Bialczak, R.C., Grose, J.E., Donev, L.A.K., Sethna, J.P., Ralph, D.C. and McEuen, P.L. (2005), "Vibration-assisted electron tunneling in c140 transistors", Nano Lett., 5(2), 203-207. https://doi.org/10.1021/nl048619c.
  63. Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.
  64. Pica, M. and D'Amato, R. (2020), "Chemistry of phosphorene: synthesis, functionalization and biomedical applications in an update review", Inorganics, 8(4), 29. https://doi.org/10.3390/inorganics8040029.
  65. Sahoo, S.K. and Wei, K.H. (2019), "A perspective on recent advances in 2D stanene nanosheets", Adv. Mater. Interf., 6(18), 1900752. https://doi.org/10.1002/admi.201900752.
  66. Sergeyev, D.M. (2012), "About tunneling of pairs of the cooper pairs through the Josephson junctions in exotic superconductors", Russ. Phys. J., 55(1), 84-91. https://doi.org/10.1007/s11182-012-9779-4.
  67. Sergeyev, D.M. (2013), "Plasma frequency in Josephson junctions with a non-sinusoidal current-phase relation", Solid State Phenom., 200, 272-275. https://doi.org/10.4028/www.scientific.net/SSP.200.272.
  68. Sergeyev, D.M. (2018), "Computer simulation of electrical characteristics of a graphene cluster with Stone-Wales defects", J. Nano Electron. Phys., 10(3), 03018. https://doi.org/10.21272/jnep.10(3).03018.
  69. Sergeyev, D.M. (2020a), "Features of the electrical characteristics of an octagraphene nanotube", J. Nano Electron. Phys., 11(6), 06022. https://doi.org/10.21272/jnep.11(6).06022.
  70. Sergeyev, D.M. (2020b), "Single electron transistor based on endohedral metallofullerenes Me@C60 (Me = Li, Na, K)", J. Nano Electron. Phys., 12(3), 03017. https://doi.org/10.21272/jnep.12(3).03017.
  71. Sergeyev, D.M. (2020c), "Specific features of electron transport in a molecular nanodevice containing a nitroamine redox center", Tech. Phys., 65(4), 573-577. https://doi.org/10.1134/S1063784220040180.
  72. Sergeyev, D.M. (2021), "One-dimensional Schottky nanodiode based on telescoping polyprismanes", Adv. Nano Res., 10(4), 339-347. htts://doi.org/10.12989/anr.2021.10.4.339.
  73. Sergeyev, D.M. and Shunkeyev, K. (2018), "Investigation of transport parameters of graphene-based nanostructures", Russ. Phys. J., 60(11), 1938-1945. https://doi.org/10.1007/s11182-018-1306-9.
  74. Sergeyev, D.M. and Duisenova, A.G. (2021), "Electron transport in model quasi-two-dimensional van der waals nanodevices", Tech. Phys. Lett., 47(4), 375-378. https://doi.org/10.1134/S1063785021040295.
  75. Sergeyev, D.M., Ashikov, N. and Zhanturina, N. (2021), "Electric transport properties of a model nanojunction Graphene-Fullerene C60-Graphene", Int. J. Nanosci., 20(1), 2150007. https://doi.org/10.1142/S0219581X21500071.
  76. Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A., Vej-Hansen, U.G., Lee. M.E., Chill, S.T., Rasmussen, F., Penazzi, G., Corsetti, F., Ojanpera, A., Jensen, K., Palsgaard, M.L.N., Martinez, U., Blom, A., Brandbyge, M. and Stokbro, K. (2020), "QuantumATK: An integrated platform of electronic and atomic-scale modelling tools", J. Phys. Condens. Matter., 32, 015901. https://doi.org/10.1088/1361-648X/ab4007.
  77. Srivastava, A., Khan, M.S. (2018), "First principle study of single-electron transistor based on metal-organic complex of dibenzothiophene", Organic Electron., 53, 227-234. https://doi.org/10.1016/j.orgel.2017.11.042.
  78. Stokbro, K. (2008), "First-principles modeling of electron transport", J. Phys. Condens. Matter., 20(6), 064216. https://doi.org/10.1088/0953-8984/20/6/064216.
  79. Tolpygo, S.K. (2016), "Superconductor digital electronics: Scalability and energy efficiency issues", Low Temp. Phys., 42(5), 361-379. https://doi.org/10.1063/1.4948618.
  80. Wang, P., Chen, B.B. and Wang, X. (2021), "Organic spin valves with nonvolatile memory using molecular doping", Synthetic Met., 273, 116676. https://doi.org/10.1016/j.synthmet.2020.116676.
  81. Wang, Y., Zhang, S., Zhang, G., Xu, X., Zhang, C., Wang, Y. and Xie, X. (2020), "Low-drift and compact readout electronics for practical SQUID magnetocardiography working in unshielded environment", Physica C, 575(7), 1353685. https://doi.org/10.1016/j.physc.2020.1353685.
  82. Ward, D.R., Scott, G.D., Keane, Z.K., Halas, N.J. and Natelson, D. (2008), "Electronic and optical properties of electromigrated molecular junctions", J. Phys. Condens. Matter, 20(37), 374118. https://doi.org/10.1088/0953-8984/20/37/374118.
  83. Xiang, R., Inoue, T., Zheng, Y., Kumamoto, A., Qian, Y., Sato, Y., Liu, M., Tang, D., Gokhale, D., Guo, J., Hisama, K., Yotsumoto, S., Ogamoto, T., Arai, H., Kobayashi., Y., Zhang, H., Hou, B., Anisimov, A., Maruyama, M., Miyata, Y., Okada, S., Chiashi, S., Li, Y., Kong, J., Kauppinen, E.I., Ikuhara, Y., Suenaga. K. and Maruyama, S. (2020), "One-dimensional van der Waals heterostructures", Science, 367(6477), 537-542. htts://doi.org/10.1126/science.aaz2570.
  84. Yang, W., Cao, Y., Han, J., Lin, X., Wang, X., Wei, G., Chen, Lv., Bournel, A. and Zhao, W. (2021), "Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions", Nanoscale, 13(2), 862-868. https://doi.org/10.1039/d0nr07290g.
  85. Zhu, J., Chen, X., Shang, W., Ning, J., Wang, D., Zhang, J. and Hao, Y. (2021), "Van der Waals contact between 2D magnetic VSe2 and transition metals and demonstration of high-performance spin-field-effect transistors", Sci. China Mater., 64(11), 2786-2794. https://doi.org/10.1007/s40843-021-1657-9.